
The Fib multimedia format
Version V1.2.2

Betti Österholz

BioKom@gmx.de

www.BioKom.info

Potsdam, February 13, 2013

Copyright (c) 2011 Betti Österholz

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "‘GNU Free Documen-
tation License"’.

CONTENTS

Contents

I Introduction 1

1 Given conditions 1

2 Problem 1

3 A solution 2

4 This document 2

5 Structure of this project 2

6 Structure of this document 3
6.1 Design of the multimedia description language 3
6.2 Design of the genetic algorithm 3
6.3 File format . 3

II The Fib multimedia description language 4

7 Requirements 4

8 The multimedia description language 5

9 Elements of the Fib multimedia description language 5
9.1 Vectors . 5
9.2 Points . 6
9.3 Property element . 7

9.3.1 Properties for fractions 13
9.4 List element . 14
9.5 Comment element . 14
9.6 Area element . 16
9.7 Functions . 17

9.7.1 Numbers and variables as subfunctions 18
9.7.2 Real subfunctions . 18

9.8 Conditions with the if-element 24
9.9 Call external objects . 25
9.10 External subobjects . 26
9.11 Retrieve domain properties . 27
9.12 Set-element . 30
9.13 Matrix element . 31
9.14 The root-element . 33

I

CONTENTS

9.14.1 Multimedia information 35
9.14.2 Domains . 35
9.14.3 Optional part . 48
9.14.4 Order of the root-Elements 51

10 The Fib database 53

11 Definitions for Fib 53
11.1 Definition of: correct Fib object 54
11.2 Definition of: complete Fib object 55
11.3 Definition of “below” and “above” in a Fib object 55
11.4 Order of the Fib elements . 55
11.5 Order of particular Fib elements 55
11.6 Order of move points . 58
11.7 Definition: part object . 59
11.8 Order of the coherent part objects 63
11.9 Definition of Fib multimedia object 63
11.10Definition of correct Fib multimedia object 65

12 Theoretical statements for the Fib multimedia description language 65
12.1 Power of the Fib multimedia language on images 65
12.2 Cardinality of Fib . 68
12.3 Any complete Fib object can be represented as a multimedia object 68

III The genetic algorithm 71

13 Core algorithm 71

14 Evaluator for individuals 73
14.1 The fitness of individuals . 73
14.2 Selection by deletion of individuals 74

15 Evaluator for operators 74

16 The genetic operators for Fib 75
16.1 Reproduction . 76

17 The social aspect of the genetic algorithm 76

18 Why genetic algorithms are good for encoding multimedia objects 77

19 Complexity estimation 78

20 Analogy to the natural evolution 78

II

CONTENTS

IV Fib storage format 80

21 Compressed storing of Fib objects 80
21.1 File Header . 81
21.2 Root-element . 81

21.2.1 Optional information fields 82
21.2.2 Checksum field . 85
21.2.3 Multimedia information 85
21.2.4 Domains . 87
21.2.5 Input variables . 100
21.2.6 Main-Fib-object . 100
21.2.7 Sub-root-objects . 100
21.2.8 Identifiers of used database objects 101
21.2.9 Optional part . 101

21.3 Fib elements . 102
21.3.1 Vectors . 102
21.3.2 Point . 103
21.3.3 Properties . 104
21.3.4 List element . 106
21.3.5 Comment element . 106
21.3.6 Area element . 107
21.3.7 Function . 107
21.3.8 If-element . 109
21.3.9 External object . 111
21.3.10 External subobject . 112
21.3.11 Retrieve domain properties 112
21.3.12 Set-element . 113
21.3.13 Matrix element . 113

22 XML format 114
22.1 XML header . 115
22.2 Root-element . 116

22.2.1 Multimedia information 116
22.2.2 Optional part . 117
22.2.3 Domains . 117
22.2.4 Input variables . 125
22.2.5 Main-Fib-object . 126
22.2.6 Sub-root-objects . 126
22.2.7 Identifiers of used database objects 127
22.2.8 Checksum field . 127

22.3 Fib elements . 127
22.3.1 Vectors . 128
22.3.2 Point . 128
22.3.3 Properties . 129

III

CONTENTS

22.3.4 List element . 129
22.3.5 Comment element . 130
22.3.6 Area element . 131
22.3.7 Function . 131
22.3.8 if-element . 133
22.3.9 External object element 134
22.3.10 External subobject . 136
22.3.11 Retrieve domain properties 137
22.3.12 Set-element . 138
22.3.13 Matrix element . 140

V Project structur of the implementation 143

23 Dependencies of the modules 143

VI Appendix 145

24 GNU GENERAL PUBLIC LICENSE 145
24.1 “GNU GENERAL PUBLIC LICENSE” 145

25 GNU LESSER GENERAL PUBLIC LICENSE 158
25.1 “GNU LESSER GENERAL PUBLIC LICENSE” 158

26 GNU Free Documentation License 161
26.1 “GNU Free Documentation License” 161

IV

Part I

Introduction
The Fib multimedia format is used to store multimedia information in a structured,
functional and hierarchical form. The structure of the Fib multimedia format sup-
ports the object oriented view of things. It is very powerful, since expressions can
be combined and nested. The needed memory size of a multimedia object in Fib
is depending on its complexity and not on its size (in terms of the extend in the
dimensions, for example, the height and width for images), as for standard storage
formats.

The second important component of the Fib system is the genetic algorithm
for encoding and compressing Fib multimedia objects. The great advantage of this
approach is, that the encoding and compression is tied not to a particular algorithm.
The encoding and compression algorithms involved in the genetic algorithm are in
fact seperated operations that can be easily added and modified. This makes it easy
to introduce new encoding and compression ideas and apply a variety of these on
a multimedia object.

In this sense, the Fib multimedia system is based on diversity rather than spe-
cialization.

1 Given conditions

A (natural) image is generally not a series of independent pixels (points with certain
colors), but contains, for example, different objects, which are distinguished from
one another and have a texture. Such objects (e.g. circles, lines, but also more
complex objects) are often repeated in pictures, either as a self-similar copy or a
transformed copy (e.g. tree leaves or slats in the fence). The same applies to other
contents of multimedia data, such as the sound.

Furthermore, elements or objects in the multimedia data are often associated
with each other or grouped, e.g. certain sounds belong often to specific objects
(e.g. a C-hook), object belong to other objects (e.g. the C-hook to a duck) and
several objects can be grouped into one object (e.g. a field with a group of ducks).

2 Problem

How to extract information about objects from an image, which is given in the form
of a matrix of pixels? (The image is given as a pixel image, for example, because
it was recorded by digital photography with a CCD.)

The extracted information can then for example be used for compression, be-
cause the information needed to encode an object, is at most the information from
all points of the object with their corresponding colors (this coding is given). For
example, for a green triangle displayed in the image, which consists of 200 green

1

3 A SOLUTION

points, it is sufficient in the best case, to just represent the triangle and the points
by a triangular object, for this only its three corners and the color is needed.

With the information about objects in the image, you can also to recognize
objects at other (sub-) images. Or the information can be used to manipulate the
image, e.g. to remove objects as a whole, copy or paste them.

3 A solution

The Fib multimedia language, respectively Fib multimedia format, has be created,
in which for the objects, transformations and relationships between the objects can
be defined. Using these Fib multimedia format, an algorithm (e.g. the AI) then
generates programs (in the multimedia language), tests and modifies them, so that
they represent a multimedia object, wich are similar enough to encode the original
multimedia object (what this means, will be specified). Further restrictions can
be imposed on the programs, e.g. shortnes and speed of execution of a program.
These criteria will then determine how “good” a program is.

Among others the genetic algorithms / programming offer good opportunities.
Since with genetic algorithms the individual parameters, elements and constructs
of the language are generated by mutation and adjusted, and the “best”/fittest -
programs will be developed. With “crossing over”, sharing code between programs
or part of a program can be taken into account, this supports the case when, may
be altered (e.g. scaled), objects will be reused in other places.

4 This document

This document is a short version of the original german documentation. Some parts
of the german documentation are skipted in this version.

This document contains mainly the discription of the important theoretical
background. The description of the source code, will be in the source code, as
doxygen comments.

5 Structure of this project

The structure of this document is based on the project structure.
The project is structured hierarchically and divided into two major components.

The components are the multimedia description language Fib and the genetic algo-
rithm to produce good Fib encodings of multimedia objects.

The project, including each of the components, is build hierarchically. Where-
upon the higher levels are build on the lower levels, while each higher level is more
detailed. This documentation includes just the lowest levels.

2

6 STRUCTURE OF THIS DOCUMENT

6 Structure of this document

This section gives an overview of the content and structure of this document.

6.1 Design of the multimedia description language

The part II on page 4 deals with the multimedia description language Fib.
The individual elements and their possible relationships to each other, will be

described in section 9 on page 5 .
The section 10 on page 53 adresses the Fib database function for Fib (objects).
In the following section 11 on page 53 definitions for the Fib multimedia lan-

guage are established, to facilitate a way of dealing with it.

6.2 Design of the genetic algorithm

The part III on page 71 adresses the design of the genetic algorithm. It is mainly
about the basic ideas behind the genetic algorithm for Fib.

6.3 File format

The part IV on page 80 describs the file formats for the Fib multimedia language.
These are independent of the program or the computer system architecture.

3

Part II

The Fib multimedia description
language
In this part the elements of the Fib multimedia language will be defined.

7 Requirements

Since for the classical bit representation low performance can be expected by ge-
netic algorithms, but because of the complexity of the problem a very high per-
formance is needed, an adapted problem representation (multimedia description
language) is selected.

The multimedia description language Fib should be kept as simple as possible,
with yust few alternatives, since an increases of the available alternatives will in-
crease the number of alternatives in the application of the genetic operations and
this will likely increase the amount of computation and implementation complex-
ity.

On the other side, the multimedia description language should allow compact
expressions for “normal” (occurring in the practice) multimedia objects. It should
therefore provide good compression options for “ normal” multimedia objects.
This implies that relationships (e. g. color gradients in a surface) between parts
(e. g. pixels of the surface) of a multimedia object can be represented as simply as
possible.

The language should be unambiguous, reproducible and evaluable, so that an
expression always evaluates to the same object. The clarity and reproducibility
isn’t so important for the implementation (e. g. due to different rounding errors
on different architectures), if the generated multimedia object is almost always (as
an example, in 0.999999 fraction of cases) very similar to the original multimedia
object. But valid language objects have to be always evaluable. Otherwise restric-
tions on the genetic operators, by which they wher generated, have to be made or
not evaluable objects could arise.

With the multimedia description language it should be possible to represent
at least all raster graphics. The generation of a raster image by a Fib multimedia
object in the multimedia description language should be comprehensible. That is,
the multimedia description language should be designed to support the distinction
of individual objects and their dependencies.

The genetic operations which change the multimedia programs should, if pos-
sible, change the program in a way, to allow a gradient descent in the hypothesis
space of the multimedia programs. By running multiple operators the hypotheses,
that the multimedia programs represent, should therefore be gradually improved.

4

8 THE MULTIMEDIA DESCRIPTION LANGUAGE

8 The multimedia description language

The multimedia description language is named Fib (for “funktionale Interpretation
von Bildern” or “functional interpretation of bitmaps (/bictures)”). This name or-
gins from the first version of the multimedia description language, when it was
only good for saving images (german: Bilder).

With some additional elements the multimedia description language has been
extended, so that it can store any multimedia data. The only restriction on the
multimedia data is, that it can be represented as properties of points of a finite,
euclidean and discrete (there are smallest units) space.

Fib is a vector representation of multimedia data, that means a representation
of multimedia data using objects. As a basic framework a tree is used. The leaves
are endpoints that are used for displaying and / or assignment of points or part of
multimedia objects. In the branches and the alignment of these, which for example
is most left, display parameters or properties of the leaves are encoded, e. g. how
often it is displayed or with which color.

Each node of the tree is a Fib element. The tree is evaluated from the root to
the leaves, whereupon the elements affect the evaluation.

A valid Fib object (tree) is cycle free, to ensure a finite processing time.
The elements of the multimedia description language are oriented on some of

the usual imperative programming languages (e. g. C++, Java).
All units are expressed on the basis of the International System of Units (SI).
When a Fib object is evaluated, all points with their properties are determined

for the multemedia object. A evaluated multimedia object thus contains only a list
of specific points and their properties, and can thus be directly displayed (through
displaying the properties at the points / coordinate) or evaluated.

Hereinafter “top” in the Fib object is referred to the direction, in which the root
of the tree lies. The direction of “bottom” is thus the opposite direction (away from
the root).

9 Elements of the Fib multimedia description language

This section describes the elements of the Fib multimedia description language.
Below Obj stands for a Fib object.

9.1 Vectors

Vectors are used for providing numerical values. There are different types of vec-
tors (e. g. position vectors, range vectors or property vectors for RGB colors). The
type of a vector (and optionally information in the root-element) gives the domain
and the number of the elements that it contains. Each vector element is either a
number or a variable, which is set in the Fib object above the Fib element of the
vector.

5

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

If the value of an evalued element is outside of its domain (the domain for the
vector element), this value is rounded to the nearest value that lies in the domain.
If an element of the vector is not existing, it is evaluated as the zero value of its
domain.

Vectors of one type are only used in a very specific type of Fib element.
A listing of the possible vector typs can be found in Table 1 .

vector description used
in Fib
element

number of
elements

typ of el-
ements

position the position of a point point any (a vec-
tors can al-
ways contain
just 0 ele-
ments)

numbers

area contains the borders of
an area (inclusive the
borders)

area 2 integers

property
vector (there
are more
than one
type)

defines a value of a
property

property any numbers

Table 1: Vector typs

9.2 Points

The points are the displaying elements. At them the set properties are evaluated.
Points serve as the leaves of Fib objects.

An empty point “point()” is possible. The empty point has no effect (all prop-
erties are lost). It can be used in combination with other elements (e. g. the
if-element).

There are also points with an empty position vectors “point(())”, these points
create the background (e. g. the background color).

The properties of the point (e. g. color, sound and / or odor) are determined in
the branch above the point with property elements.

Syntax: Obj = point(PositionV ector)

Short syntax: Obj = p(PositionV ector)

PositionV ector : the coordinate vector of the point

6

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Examples:

• p((10; 20)); a point on the position (10, 20)

• p((10;x)); x is a variable that must be set in the branch to this point

• p(); the point has no impact and all the properties are discarded

• p(()); point that affects the entire background

9.3 Property element

With the property element “property” properties for Fib objects will be set.

Syntax: Obj = property((value1, ..., valuen)name, Obj1)

Short syntax: Obj = pr((value1, ..., valuen)name, Obj1)

name The name specifies the name of the property. It determines the type of the
vector. All property types should belong to the vector supertype “property”.

valuei This is the value i of the property.

Obj1 The contained object, for which the property will be set.

name value num-
ber
of
val-
ues

description example

whatever 0 0 The properties of the subobject
does not matter. Whichever
properties are also associated
with this subobject, they are cor-
rect.

pr(()whatever, Obj)

Color
(all colors overwrite current set colors of the actual Fib object)

colorRGB 1 3 color as red, green and blue frac-
tion values

pr(
(255, 16, 0)colorRGB ,
Obj)

colorGrayscale 2 1 luma fraction pr((25)colorGrayscale,
Obj)

More properties
layer 100 1 layer for the points (lower layers

are covered by higher layers)
pr((2)layer, Obj)

7

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

name value num-
ber
of
val-
ues

description example

transparency 200 1 transparency fraction for the col-
ors of the points

pr((25)transparency,
Obj)

persistent 210 0 This property is only useful for a
time period (or the dimension of
time). Points in space with this
property lose their other proper-
ties only, if they are overwrit-
ten later in time by a respec-
tive property of the same type.
This of course only holds as
long as the particular point has
the property persistent. The
property persistent is useful for
example, if in a movie a ob-
jects should be visible as long
as they are not overwritten by
other objects. In this case, for
the entire Fib object the property
persistent can be set. If an ob-
ject is defined at a time and dis-
played, it will displayed in the
future as long as it is not over-
written.

pr(()persistent, Obj)

Sound properties
sound 300 4 a sound; the values are: 1. fre-

quency in Hertz (1/s), 2. sound
pressure in Pascal Pa (1Pa =
1N/m2), 3. phase shift in ra-
dians, 4. duration in seconds; a
sound is additive to other sounds

pr(
(5000, 40, 0.5, 50)sound,
Obj)

8

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

name value num-
ber
of
val-
ues

description example

soundPolarized 301 3 +
♯D

a sound; the values are: 1. fre-
quency in Hertz (1/s), 2. sound
pressure in Pascal Pa (1Pa =
1N/m2), 3. phase shift in radi-
ans, 4. duration in seconds; r = 5
to (3 + ♯D) polarization fraction
(as an angle in radians) in the di-
mension plane, which is spanned
by the respective dimensions r−
4 and r− 3 (♯D is the number of
dimensions), the angle origin is
the r − 3 axis a goes in positive
direction; a sound is additive to
other sounds

pr((5000, 40, 2, 0.5, 5
)soundPolarized, Obj)

soundAmplitude 305 3 the amplitude of a sound; the
values are: 1. sound pressure in
Pascal Pa (1Pa = 1N/m2), 2.
phase shift in radians, 3. dura-
tion in seconds; a sound is ad-
ditive to other sounds; With this
properties sounds can be build
by their amplitude with a spe-
cific sampling rate, such as in the
WAVE file format.

pr((40, 0.5, 0.0005
)soundAmplitude, Obj)

soundBarrier 310 1 speed of sound in meters per sec-
ond (m/s); With this property
objects can change the acoustics.

pr((343)soundBarrier,
Obj)

soundReflected 311 1 fraction of sound reflected from
the object; This property applies
to the surface / the edge of the
object and not for all his individ-
ual points

pr((50)soundReflected,
Obj)

soundDamping 312 1 fraction of the sound swallowed
by a point

pr((2)soundDamping,
Obj)

Physical properties
kelvin 400 1 temperature in Kelvin pr((300)kelvin, Obj)

9

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

name value num-
ber
of
val-
ues

description example

electroMagnetic 410 3 +
♯D

an electromagnetic radiation
source, the values are: 1.
frequency in Hertz (1/s), 2. am-
plitude in Candela cd, 3. phase
shift in radians, 4. duration in
seconds, r = 5 to (3 + ♯D) po-
larization fraction (as an angle
in radians) in the dimension
direction, which is spanned by
the respective dimensions r − 4
and r − 3 (♯D is the number of
dimensions), the angular infor-
mation is provided by the r − 3
axis in positive direction, an
electromagnetic wave is additive
to other electromagnetic waves

pr((5, 3 ∗
1014, 2, 0.5, 0.5, 50
)electroMagnetic, Obj)

Properties for describing objects
(They describe only the part objects, without any further impact)

periodBegin 500 1 time in seconds (s) from the be-
ginning of the whole multimedia
object, starting at which the ob-
ject is to be displayed; if possi-
ble, this property should be near
the root of the multimedia ob-
ject; when a multimedia object is
played it can be determined with
this property: the order in which
subobjects should be evaluated
and/or till which time to evaluate
a part object

pr((0.3)periodBegin,
Obj)

10

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

name value num-
ber
of
val-
ues

description example

periodEnd 501 1 time in seconds (s) from the be-
ginning of the whole multime-
dia object, till which the ob-
ject is to be displayed; if possi-
ble, this property should be near
the root of the multimedia ob-
ject and follow a “periodBegin”
property; when a multimedia ob-
ject is played it can be deter-
mined with this property: the or-
der in which subobjects should
be evaluated and/or till which
time to evaluate a part object
completely

pr((0.4)periodEnd,
Obj)

evaluationTime 502 1 time required for evaluating a
multimedia object, in proportion
to a multimedia object, which
contains only one point (the
value should be seen as a mul-
tiple of the evaluation time of
a point); with this property in
combination with the properties
“periodBegin” und “periodEnd”
a good evaluation order and time
can be evalued for the partob-
jects, when playing a multime-
dia object; this property should
stand immediately after (or be-
low/within) “periodBegin” and
“periodEnd”

pr(
(15.8)evaluationT ime,
Obj)

Properties for the compressed storing
(these have no effect on the points)

11

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

name value num-
ber
of
val-
ues

description example

checksum 600 3 An checksum for the object will
be generated. The first param-
eter determines the type of the
checksum. The second param-
eter specifies any which num-
ber of bits, a checksum is to
be generated, and the third pa-
rameter defines how many bits
the checksum is long. The last
block of the checksum will be
filled with 0 after loading the
blocks, so that it too has the de-
sired length. If there are enough
bits to correct an existing error,
it will be attempted to correct
the error. (see section 21.3.3 on
page 104)

pr(
(1, 1024, 16)checksum,
Obj)

boundSize 601 0 For the part object the border/-
size in bits will be stored, when
saving it. If an error occured
while loading the part object, the
(in the bitstream after the faulty
part object) following part ob-
jects can still be loaded, because
their beginning is known. (see
section 21.3.3 on page 105)

pr(()boundSize, Obj)

Other properties
Product Proper-
ties

240
to
255

va-
ri-
able

Properties which are product
specific. Different producers can
use this area, without getting
incompatible with later defined
properties.

Table 2: properties (the prefix “property::“ was omitted because of
clarity)

The table 2 shows different properties, which can be set with the “property” el-

12

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

ement (the prefix “property::“ for the names was omitted because of clarity). Every
property has it’s own vector type. Every vector type has the supertype ”property“.
The domains of the vector typs are declared in the root-element (see section 9.14
on page 33).

In table 2 the ♯D stands for the number of dimensions in the Fib multimedia
object.

In table 5 on page 43 the property typs with their default domains are listed.
If for a position a needed property dosn’t exists, the zero vector from the valid

domain (or maybe the default domain) will be assumed for it.

Examples:

• pr((255, 0, 0)colorRGB, p((10; 20))); a red point on position (10,20)

• pr((x)colorGrayscale, p((10;x))); x is a variable, which will be set higher in
the branch, this variable influenced the position and also color / brightness
of the point

• pr((0, 0, 255)colorRGB, p(())); the whole background is blue

9.3.1 Properties for fractions

For elements of properties relating to fractions, the upper limit (100 %) is deter-
mined by the maximum of its domain and its lower limit (0 %) is determined by the
minimum of its domain. Therefore, for elements of properties relating to fractions,
there should be always specified the minimum and maximum value for the domain
for the lower and upper limit, even if it is not used in the Fib object.

As an example, the color red for ”colorRGB“ is shown here. This is assigned in
the Fib object a domain of integers in the range from −10 (lower limit) to 90 (upper
limit). The color red is, when viewed, a portion of the red value of a point, which
goes from 0.0 for no red (lower limit) to 1.0 for maximum red (upper limit). The
−10 of the property will correspond to the value 0.0 of the red value on display and
the 90 corresponds to 1.0. The interim value of the property 40 will correspond to
0.5 and the intermediate value 0 will correspond to 0.1 . It should be noted that in
the domain, not all integers between −10 to 90 must be present. The domain may
consist of only eight numbers (eg. D = {−10, 0, 3, 4, 5, 21, 40, 90}), of which
−10 is the smallest and 90 is the greatest number. The −10 and the 90 have to
be in the domain, to set the limits, even if they do not appear in the Fib object.
The same procedure is used for the other color values of the ”colorRGB“ property,
which may have different domains.

Elements of properties, which are fractions:

• ”colorRGB“: all vector elements; 0.0 is the lower boundery when displayed
and corresponds to ”no color“

13

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

• ”colorGrayscale“: all vector elements; 0.0 is the lower boundery when dis-
played and corresponds to ”black“

• ”transparency“: all vector elements; 0.0 is the lower boundery when dis-
played and corresponds to ”not transparent“, 1 corresponds to ”total trans-
parent“

• ”soundReflected“: all vector elements; 0.0 is the lower boundery when dis-
played and corresponds to ”no reflection“

• ”soundDamping“: all vector elements; 0.0 is the lower boundery when dis-
played and corresponds to ”no damping“

9.4 List element

With the list element “list” several objects can be combined into one object. For
that an execution order is determined, to ensure, in case of overlap of the subob-
jects, that always the same subobjects cover the same other subobjects, so that this
don’t change (because of the uniqueness of Fib objects).

Syntax: Obj = list(Obj1, . . . , Objn)

Short syntax: Obj = l(Obj1, . . . , Objn)

Obji are the branches/ subobjects of the list object, with i ∈ {1, . . . , n} and n ≥ 2
(there have to be at least two subobjects in the list object). The subobject Obji will
be evalued before the subobject Obji+1, so Obji+1 will maybe overlap Obji.

9.5 Comment element

The comment element is used to name and describe subobjects. Within it, in con-
trast to all other elements, strings can be used.

Syntax: Obj = comment(Key, V alue,Obj1)

Short syntax: Obj = c(Key, V alue,Obj1)

Description of the elements:

Key: the key of the comment or description of Obj1

V alue: the value of the comment or description of Obj1

Obj1: the subobject, for which the comment or description apply

The key Key can be any string. It is advisable to choose one of the predefined
keys from table 3 . In this way, all keys from the entire Fib object can be filtered or
can be used for looking for a specific subobject.

The value V alue of a comment can be any string.

14

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Key description example
unknown unknown type of comment c(unknown, “Waka Waka”, Obj

)
autor autor of the subobject c(autor, “oesterholz”, Obj)
autor::email email adress of the autor c(autor::email, “au-

tor@gmx.com” , Obj)
autor::adress adress of the autor c(autor::adress, “Some City

123456;Main Street 13”, Obj)
autor:: tele-
phon

telephone number of the autor c(autor::telephon,
“012/345/6789”, Obj)

creation::date creation date of the subobject c(creation::date, “2009/10/30”,
Obj)

creation::time creation time of the subobject c(creation::time, “15/57/32”,
Obj)

creation::
coordinate

cratione position of the subobject as
Geographic Coordinates

c(creation::coordinate, “Lat =
47◦ 25′ N, Lon = 010◦ 59′ E”,
Obj)

creation:: lo-
cation

creation position of the multimedia
object as a place name

c(creation::location, “Platz der
Republik 1, 10117 Berlin”, Obj
)

type type of the subobject c(type, “tree”, Obj)
description description of the subobject c(description, “This is me while

fishing”, Obj)
name name of the subobject c(name, “Statue of Liberty”,

Obj)
copyright Copyright of the subobject c(copyright, “GPL3”, Obj)
comment a general comment for the subobject c(comment, “please rework

again”, Obj)
link a link for the subobject (it can be

accessed when you click on the ob-
ject)

c(link, “http://www.fib-
development.org”, Obj)

nextElement::
description

A description for the next Fib el-
ement that the comment element
contains.

c(nextElement::description,
“This element is used to gener-
ate copies.”, Obj)

15

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

nextElement::
function

A description of the function of the
next Fib element, which is con-
tained in the comment element. If
the key is a name of a dimension di-
rection, the next Fib element should
be an area element, that defines
a variable, through which the cor-
responding dimension direction is
generated. If the key is for exam-
ple “time”, the defined variable of
the contained area element can be
set to generate the multimedia ob-
ject for a specific time. Other pos-
sible key values: “scene” the area
element iterates through the scenes
of the multimedia object. With such
identification, certain moments or
scenes can be accessed quickly.

c(nextElement::function,
“time”, Obj)

Table 3: Keys

9.6 Area element

The area element defines a variable. It sets the defined variable to integers of a
specified range of integers. The area element contains, in addition to the defined
variables and the subobject to which it applies, a list of areas, which the variable
will go through. The variable is valid everywhere in the subobject.

Syntax: Obj = for(V ariable, (B1, B2, . . . , Bn), Obj1)

Description of the elements:

• V ariable: The variable, which the area element defines.

• Bi (i = 1 . . . n) are the areas. For the value n is n ≥ 1, so there is at least
one subarea in the area element.

• Obj1: The subobject, for which the V ariable is defined and which will be
evalued for every variable assignment of the area.

One (sub-)area Bi is a vector of degree 2, whose two integer components spec-
ify an integer field, to which the variable will be set. An area Bi consists of the two

16

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

(integers) elements of the vector Bi and all integers between them. If one element
of the vector is a variable, that contains a non-integer value, it is rounded to an
integer. For the rounding, the decimal digit befor the point remains the same, if
the first decimal digit after the point is between 0 to 4, otherwise (from 5 to 9) the
number of the decimal befor the point is increased by one for positive numbers and
decreases by one for negative numbers.

The area element includes as its area the union of all its subareas Bi. It will
therefore go through a range of all integers, which are contained in its subareas Bi.

Examples:

• for(x, [(1; 3), (10; 14)], Obj); In this example, the variable x for the object
Obj is set to the successive values: 1; 2; 3; 10; 11; 12; 13; 14

• for(x, [(1; y = 3.4985)], Obj); In this example, the variable x for the object
Obj is set to the successive values: 1; 2; 3

• for(x, [(1; y = 3.5)], Obj); In this example, the variable x for the object
Obj is set to the successive values: 1; 2; 3; 4

Note: With this definition of the area element continuous functions can not be
realized, because the area element just allows integers and dosn’t allow continuous
transition of values. Functions can only be realized continuous up to a certain point
(e. g. in the range of integers).

Example: The function y = x2 for the area x = {0, 1, 2} (chosen simple just for
clarification)

If it is tried to realize it in the form: for(x, [(0; 2)], fun(y, exp(x; 2), p((x, y))))
gaps will result (in the transition from (1, 1) to (2, 4) a point (x, 3) is missing).

However, this can be solved by “compression of the range”:
for(x, [(0; 6)], fun(sx, div(x, 3), fun(y, exp(sx, 2), p((sx, y)))))

Now a point (2;3) exists (x = 5 → sx = 5/3 rounded up 2; y = (5/3)2 ≃
2, 78 rounded up 3)

This has been choosen in favor for an easier implementation and better perfor-
mance. Multimedia objects (e. g. images) which are encoded in the Fib multimedia
description language, will be made of individual dots (pixels) in the representation.

However, it is possible to achieve a scalability of a Fib multimedia object in
other ways.

9.7 Functions

Functions are Fib elements that assign to the variable, that they define, a value,
that is calculated using a formula. For that a function contains a subfunction. A
subfunction is a number, variable, or a true subfunction.

17

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Syntax: Obj = fun(V ariable, UF,Obj1) (An alternativ for “fun” is “fkt”.)

Short syntax: Obj = f(V ariable, UF,Obj1)

Description of the elements:

• V ariable: The variable, which the function element defines.

• UF : This is the subfunction of the function.

• Obj1: The subobject, for which the V ariable is defined and which will be
evalued for the calculated variable assignment of the function.

9.7.1 Numbers and variables as subfunctions

A subfunction can be a number or a variable. This usually only makes sense, if the
number or a variable subfunction is a subfunction of an other real function (like the
addition). Variables must be defined in a Fib object above the function element, in
which they are used (e. g. by a different function element).

Syntax number: X

Example number: 3

Syntax Variable: x

Example Variable: x

9.7.2 Real subfunctions

Every real subfunction, like each variable, represents one value. Before evaluing a
subfunction, the values of its subfunctions will be evalued.

There are no volatile / non-defined values. Function values, which are not de-
fined for the normal mathematical function, are mapped to 0. Since for Fib objects
no claim is made that they are mathematically correct (they should be unambigu-
ous, reproducible and evaluable), so the filling of gaps in the mathematically defi-
nition is appropriate.

In the following UF1 and UF2 are subfunctions.

Addition The addition is needed as the most basic operation.

Syntax: UF = add(UF1, UF2)

Examples:

• fun(x, add(1, 3), Obj); Realizes the function: x = 1 + 3 = 4

• fun(x, add(y,−3), Obj); Realizes the function: x = y + (−3) = y − 3

• fun(x, add(add(2, y), add(z, v)), Obj); Realizes the function: x = (2 +
y) + (z + v) = 2 + y + z + v

18

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Subtraction The subtraction subtracts two values.

Syntax: UF = sub(UF1, UF2)

Examples:

• fun(x, sub(1, 3), Obj); Realizes the function: x = 1− 3 = −2

• fun(x, sub(y,−3), Obj); Realizes the function: x = y − (−3) = y + 3

• fun(x, sub(sub(2, y), add(z, v)), Obj); Realizes the function: x = (2 −
y)− (z + v) = 2− y − z − v

Multiplication The multiplication multiplies two values.

Syntax: UF = mult(UF1, UF2)

Examples:

• fun(x,mult(2, 3), Obj); Realizes the function: x = 2 ∗ 3 = 6

• fun(x,mult(y, 3), Obj); Realizes the function: x = y ∗ 3 = 3y

• fun(x, add(y,mult(−2, z)), Obj); Realizes the function: x = y+(−2z) =
y − 2z

Division The division could in fact be replaced by the multiplication and the
exponential function (div(a, b) = mult(a, exp(b,−1))), but because this is ex-
pensive there is this separately function.

Syntax: UF = div(UF1, UF2)

Examples:

• fun(x, div(2, 3), Obj); Realizes the function: x = 2/3

• fun(x, div(y, 3), Obj); Realizes the function: x = y/3

• fun(x,mult(4, div(y, z)), Obj); Realizes the function: x = 4 ∗ (y/z)

• fun(x, div(4, 0), Obj); will be evalued to 0, because x = 4/0 is not defined

• fun(x, div(335, 113), Obj); Realizes the function: x = 335/113 ≃ 3, 1415929 ≃
π

19

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Modulo This function provides the symmetric modulo operator. The symmetric
modulo operator returns the remainder of the integer division. (mod(x, y) =
x− y ∗ int(x/y), where int refers to the truncation of the decimal digits)

Syntax: UF = mod(UF1, UF2)

Examples:

• fun(x,mod(−12.3, 3), Obj); the evalued value is −0.3

• fun(x,mod(6.5, 0.5), Obj); the evalued value is 0

• fun(x,mod(−4.687,−3), Obj); the evalued value is −1.687

Exponent The exponential function is working on two subfunctions. Wherein
the first value is the basis and the second the exponent.

Syntax: UF = exp(UF1, UF2)

Examples:

• fun(x, exp(2, 3), Obj); Realizes the function: x = 23

• fun(x, exp(y, 3), Obj); Realizes the function: x = y3

• fun(x, exp(4, div(y, z)), Obj); Realizes the function: x = 4y/z

Minimum The minimum function operates on two subfunctions. It provides as
the result the smallest value of the two subfunctions.

Syntax: UF = min(UF1, UF2)

Examples:

• fun(x,min(0, 12), Obj); will return 0

• fun(x,min(add(−2, 7), 4), Obj); because add(−2, 7) = −2 + 7 = 5, 4
will be returned

Maximum The maximum function operates on two subfunctions. It provides as
the result the biggest value of the two subfunctions.

Syntax: UF = max(UF1, UF2)

Examples:

• fun(x,max(0, 12), Obj); will return 12

• fun(x,max(add(−2, 7), 4), Obj); because add(−2, 7) = −2 + 7 = 5, 5
will be returned

20

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Logarithm The (natural) logarithm function works, in contrast to the previously
described functions, only on one value. The natural logarithm is determine to the
base e.

Syntax: UF = ln(UF1)

Examples:

• fun(x, ln(2), Obj); Realizes the function: x = ln (2) ≃ 0, 6931

• fun(x, ln(−2), Obj); is evalued to 0, because x = ln (−2) is not defined

Sine The sine function works on only one value that is specified in radians.

Syntax: UF = sin(UF1)

Explanatory notes: Since the sine function (or cosine) in conjunction with the
Fourier transformation is common in image processing, the sine function is ex-
pected to enrich the Fib multimedia description language. The cosine function
can be easily obtained from the sine function (by the addition of π/2: cos(x) =
sin(x+ π/2)). The tangent function can be derived using the sine function
(tan (x) = sin(x)/sin(x+ π/2)).

Examples:

• fun(x, sin(0), Obj); realizes the function: x = sin 0 = 0

• fun(x, sin(1.57), Obj); realizes the function: x = sin 1.57 = sin 3.14/2 ≃
1

• fun(x, sin(y), Obj); realizes the function: x = sin y

• fun(x, sin(sub(1.57, y)), Obj); realizes the function: x = sin (1.57− y) ≃
cos y

Arc sine The Arkussinusfunktion is the inverse of the sine function. It returns
values in radians.

Syntax: UF = arcsin(UF1)

Example:

• fun(x, arcsin(0), Obj); realizes the function: x = arcsin 0 = 0

21

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Absolute value The absolute value function returns a positive number. If the
input of the absolute value function was negative it is multiplied by −1, otherwise
it is returned directly without modification.

Syntax: UF = abs(UF1)

Example:

• fun(x, abs(−124), Obj); realizes the function: x = | − 124| = 124

Round This function rounds the value of the subfunction to an integer value. For
the rounding, the decimal digit befor the point remains the same, if the first decimal
digit after the point is between 0 to 4, otherwise (from 5 to 9) the number of the
decimal befor the point is increased by one for positive numbers and decreases by
one for negative numbers.

Syntax: UF = round(UF1)

Examples:

• fun(x, round(−12.3), Obj); the returned value is -12

• fun(x, round(6.5), Obj); the returned value is 7

• fun(x, round(−4.687), Obj); the returned value is -5

Delay In the delay function retrieves the previous value of a variable X . In the
evaluation of Fib objects some branches will be evalued several times (e. g. for
each value of an area element). The delay function will return the value, that it has
taken before UF1 calls of the delay function.

Status: not implemented, planned for implementation

Syntax: UF = delay(X,UF1, UF2)

Description of the elements:

• X: The variable, which former value should be returned. The variable
should be defined in the same branch as the Fib element of the delay func-
tion.

• UF1: An natural number, which determines, from which former delay-call
the value of X should be taken. If UF1 is no natural number, it will be
rounded to a natural number.

• UF2: The standard value which is given back, if there is no UF1 former
value for X .

22

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

The dalay function stores for every call a of an evaluation the value Wa, of the
variable X . When the dalay function is called the n’th time, it returns the value
Wn−UF1 , which the variable X had in the n − UF1 call. If n − UF1 is smaler as
1, the value of the subfunction UF2 will be returned.

An run is determined by the evaluation of the entire Fib object. For example,
the evaluation of the Fib object over the top most root-element is a run. If such an
evaluation over the top root-element is restarted, a new run is started and the delay
function discards all previous values Wa.

Example:

• delay(x, 1, 3); the variable x is set to the value, it had in the former delay-
call or to the value 3, if the delay function is evaluated for the first time (in
the run).

Note: With the delay function in connection with the set element, as well as area
and function elements, for example, polygons can be easily generated. With the
set-element, the edges of the polygon should be established. With the delay func-
tion the values for previous vertices are retrieved, which are then connected via
divisional and functional elements.

if The if function works similar to the if-element (see section 9.8 on page 24).
It will evalue a condition and than, depending on whether the condition result is
true or false, will return the value of its first (true case) or second (false case)
subfunction.

Syntax: UF = if(Condition, UF1, UF2)

Description of the elements:

• Condition: The condition of the if-function as described in section 9.8 on
page 24. If the condition is true, the value of first subfunction UF1 will be
returned, else, if the condition is false, the value of the second subfunction
UF2 will be returned.

• UF1: The first subfunction of the if function.

• UF2: The second subfunction of the if function.

Example:

• if(lo(x, 7), 1, sin(x)); will return 1, if the variable x is lower than 7, else
sin(x) will be returned

23

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

9.8 Conditions with the if-element

To evalue subobjects depending on variables, the if-element can be used.

Syntax: Obj = if(Condition,Obj1, Obj2)
If the condition is true, the first subobject Obj1 will be evalued, else, if the

condition is false, the second subobject UF2 will be evalued.

The following conditions Condition are available (UFi are subfunctions as de-
scribed for function element in section 9.7 on page 17):

• true: the condintion is true

• false: the condintion is false (=not true)

• not(Condition1): the condintion is true, if the Condition1 is false (respec-
tively not true), else the condition is false

• or(Condition1, Condition2): the condintion is true, if one or more of the
conditions Condition1 or Condition2 are true, else the condition is false

• and(Condition1, Condition2): the condintion is true, if both of the condi-
tions Condition1 and Condition2 are true, else the condition is false

• xor(Condition1, Condition2): the condintion is true, if exactly one of the
conditions Condition1 or Condition2 is true, else the condition is false

• eqInt(UF1, UF2): the condintion is true, if the rounded to an integer value
of the subfunction UF1 is equal to the rounded to an integer value of the
subfunction UF2, else the condition is false; The direct comparison of float-
ing point numbers was rejected, because due to slightly rounding errors the
condition can lead to different results on different systems.

• lo(UF1, UF2): the condintion is true, if UF1 is smaler than UF2 (UF1 <
UF2), else the condition is false

• gr(UF1, UF2): the condintion is true, if UF1 is greater than UF2 (UF1 >
UF2), else the condition is false

Notes: The if construct is one of the most powerful programming language con-
structs, so it was included in the Fib multimedia description language.

Examples:

• Obj = if(lo(x, 7), Obj1, Obj2); Obj1 will be evalued, if the variable x is
smaler than 7, else Obj2 will be evalued

• Obj = if(and(gr(add(x, 2), 3), lo(x, 7)), Obj1, Obj2); Obj1 will be eval-
ued, if the variable x plus 2 is greater than 3 and x is smaler than 7 (thus if x
is a number betwean 1 and 7), else Obj2 will be evalued

24

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

9.9 Call external objects

External objects are Fib objects that are not defined in the current Fib subobject.
These can be from a root-element (root) or from the Fib object database (see section
10 on page 53). In this way, parts of Fib objects can be used multiple times in the
Fib object or can be reused for different Fib objects.

Syntax:

Obj = obj(Identifier, (V1, . . . , Vn), (OutV ar1, . . .

, OutV arv1 , Obj1), . . . , (OutV ar1, . . . , OutV arvm , Objm))

Description of the elements:

• Identifierer: Identify (a unique integer) for the Fib object, which is to be
used. Only Fib objects that come after the current Fib object should be used
(to avoid recursion), in which the Fib objects from the root-elements come
first, and then the Fib objects of the database. Of the root-elements, only
the root-elements are examined, which contain the current Fib object, but no
root-elements, which do not contain the current Fib object. When the exter-
nal object comes from the database, the Identifier is negative, otherwise it
is positive. While searching for the external objects (with the Identifier) in
the root-elements, first the root subelements of the next root-element root1
will be searched, in which the Fib object occurs, which requires the external
object. In it (root1) only subroot-elements will be checked, which stands af-
ter the root subelement, which contains the external object element. So first
the Identifier in the next root-element root1 from the external object ele-
ment are investigated, and than the Identifier after the root-element root1
in the root-element, in which the investigated root-element root1 stands. The
section 9.14.4 on page 51 defines the order for the root-elements which de-
termines, how they will searched through, when looking for a Identifier.
You can also find their, which and in what order the root-elements will be
checked while searching for an Identifier.

• (V1, . . . , Vn): The vector with the input values, which are needed for the
used Fib object.

• Vi: The are the input values, which are needed for the used Fib object. The
input value Vi is for the i’th input variable of the corresponding root-element
or the i’th input variable of the root-element will be set to the value Vi .

• Objo: The subobjects, that are needed for the extern object. All subobjects
are resolved before the current object. The subobjects are ordinary objects,
which themselves can contain external objects. All in the subobjects con-
tained external objects are resolved in relation to the current object. Re-
solved here means, that they are loaded and integrated into the Fib object

25

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

(contained variables are assigned to existing variables), without evaluating
them at this point. The subobjects must be provided in the root-element with
the corresponding identifier Identify. In the corresponding root-element,
the same number of output variable lists with the same number of output
variables should be present. (see the root-element 9.14 on page 33)

• OutV argo : The output variables, which are provided for the extern object
Objo from the current Fib object. If an output variable is not yet provided, it
is set to 0.

The number and sequence of the subobjects, input and output variables must
match the definition of the external object (the root-element with the Identifier).

Notes: The external object (obj) element is after the root-element one of the most
complicated Fib elements. But reusing subobjects or functions should be worth
that effort.

Examples:

• obj(−3, x, y): The root database object with the identifier −3 is used here.
The variable x and y are the input parameters (e. g. they can determine the
upper left corner wher the inserted object should be display).

• obj(5, x1, y1, (x2, y2, r, pr((r, 0, 0)colorRGB, p((x2; y2))))): The root object
with the identifier 5 is used here. This object, can use the object
pr((r, 0, 0)colorRGB, p((x2; y2)), where the red fraction and the position of
the point is determined by the output parameters / varaibles r, x2 and y2.

9.10 External subobjects

External subobjects are objects, that are already provided during the evaluation of
the current Fib object. (See the subobjects Objo in section 9.9 on page 25)

Syntax: Obj = sub(Number, (V1, . . . , Vn))

Description of the elements:

• Number: The number of the external subobject (corresponding to an output
variable vector in the next root-element), which is to be used here. The
Number can only be fixed integer value. The domain of the Number is
implicit in the number of external subobjects (or output variable vectors) of
the next root-element (the root-element, in which the subelement appears
in the main-Fib-object), see section 9.14 on page 33 . If the value of the
specified number is outside the valid domain (this is equivalent to an error),
it is rounded to the next value, which lies in the domain.

26

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

• (V1, . . . , Vn): The vector with the output values, which are needed for the
used Fib object.

• Vi: This are the output values, which are needed for the used Fib object.
For them the output variables (OutV ariNumber) in the im external object
element (obj) are defined. The output values have the same number and or-
der as the Number’th output variables in the corresponding external object
element (obj). Nevertheless, if the number does not match (equivalent to a
faulty Fib object), the variables that are too much are ignored, and for the
missing variables, the zero value of the domain of the corresponding output
variable in the root-element is used.

Notes: With external subobjects multimedia information can be provided for the
Fib object, which can be used in certain places. This is useful for example, if the
current Fib object, implements a calculation or function, which is more extensive
and is required several times in other Fib objects.

If an external subobject dosn’t exists for the evaluation of a root element, an
empty point p() (point without impact) will be used for it. external subobjects can
even be useful for the top most root-element, if for example the multimedia object
Obj is just a frame, in which an other picture can be displayed from an given start
point (given by the output values).

Examples:

• sub(1): At this point, the first external subobject of the next root-element is
used.

• sub(1, x, y, r): At this point, the first external subobject of the next root-
element is used. The variables x, y and r are provided for the external sub-
object. These variables could for example be used for the position (x, y) and
r for the amount of red of the point, which is used for the external subobject.

9.11 Retrieve domain properties

Status: not implemented, planned for implementation

This Fib element is used to retrieve parameters of the domains.

Syntax: Obj = domainProperty(V ariable, Type[.Element]∗,Mode,Obj1)

Syntax: Obj = dp(V ariable, Type[.Element]∗,Mode,Obj1)

Description of the elements:

27

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

• V ariable: The variable, which the domain property element defines. If no
domain parameter for the variable can be determined, the variable will be set
to 0 .

• Type: The type of the domain whose parameter should be determined. Pos-
sible types are listed in table 5 on page 43.

• Element: If the domain is a vector domain (a domain for vectors), the num-
ber of the vector element, for which a property value should be returned,
must be specified with Element. Ther can be more than one Element pa-
rameters following each other, if some (more than one) vector domains are
nested. Since the V ariable can only be assigned to scalars, no vector can be
determined with the domain property element, but there have to always be
a vector element selected. The counting of the vector elements of a vector
starts at 1.

• Mode: Which property value of the domain is to be selected. Possible values
are listed in table 4 .

• Obj1: The subobject, for which the V ariable is defined and which will be
evalued for the retrieved variable assignment of the domain property ele-
ment.

For finding the correct domain first the domains of the next (higher) root-
element are searched, than its value domains. If no appropriate domain is found
in the first root-element the next (higher) (to the first root-element) root-element is
searched and so on.

Notes: With this element properties of the environment can be obtained. This can
be useful, if a multimedia object is to be scaled afterwards with a given dimension
domain. The displayed objects can be automatically adjusted via the retrieval of
the dimension domain properties in size and position.

Examples:

• dp(x, dim.1,min,Obj1): The variable x is set to the minimum value of the
domain for the first dimension.

• dp(x, property(colorRGB).2,max,Obj1): The variable x is set to the max-
imum value of the domain for the color green (second vector element) of the
RGB colors.

• dp(x, property(colorGrayscale).1, size,Obj1): The variable x is set to
the size of the domain for SW colors. The 1 for the first vector element must
be specified, because the domain for SW color is a vector, even if it contains
only one element.

• dp(x,matrix.3.2, null, Obj1): The variable x is set to the zero value of the
second subdomain of the third subdomain of the matrix domain.

28

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Value Description
null 0 The zero value of the domain

will be returned.
min 1 The minimum value of the do-

main will be returned.
max 2 The maximum value of the do-

main will be returned.
size 3 The size (Maximum −

Minimum) of the domain will
be returned.

scaling 4 The scaling factor of the domain
will be returned. If the domain
isn’t scaled, 1 will be returned.

Unscaled(not scaled) values
(In domains that are not scaled, these correspond to the scaled
values (for example, then the return value of “unscaled min”

is equal to that of “min”)
unscaled null 10 The unscaled zero value of the

domain will be returned.
unscaled min 11 The unscaled minimum value of

the domain will be returned.
unscaled max 12 The unscaled maximum value of

the domain will be returned.
unscaled size 13 The unscaled size

(unscaled maximum −
unscaled minimum) of the
domain will be returned.

Table 4: Possible retrievable properties of a domain

29

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

9.12 Set-element

The set element assigns sets of values in succession to a number of variables. The
variables apply everywhere in the subobject.

Syntax:

Obj = set((V ariable1, . . . , V ariablen), [DomainNr,]

((W1.1, . . . ,Wn.1), . . . , (W1.k, . . . ,Wn.k)), Obj1)

Description of the elements:

• n: The number of elements of a set. The minimum number is one element.
(n ≥ 1)

• k: The number of sets of values, with which the variables will be set. The
minimum number is one set. (n ≥ 1)

• V ariablei: The variables, which the set element defines.

• DomainNr: This is the number of the domain for the set-element. This
information is optional, the default value is 0. If no set-domain with that
number exist, the set-domain with the next smallest number is used. By using
different, adapted for each set-element, domains, the memory requirements
for storing in the compressed Fib format can be optimized.

• Wi.g with (i = 1 . . . n) (g = 1 . . . k): This are the to set values for the
variables.

• (W1.g, . . . ,Wn.g): The vector with the sets of values to set.

• Obj1: The subobject, for which the variables V ariablei are defined and
which will be evalued for every variable assignment.

The variables (V ariable1, . . . , V ariablen) are sequentially assigned to the in-
dividual sets of values of (W1.g, . . . ,Wn.g). Where the variable V ariablei will
only be set to the values Wi.g (g = 1, . . . k). Thus there are k bindings of variables,
in which the variable V ariablei is first set to the value of Wi.1, after this to Wi.2,
etc. . If an element Wi.g is a variable, the V ariablei will be set to the value of
variable of Wi.g .

Example:

• set((x, y), ((1, 2), (3, 8), (3,−8)), Obj); In this example the variables x and
y will be set for the subobject Obj sequentially to the values (x = 1, y = 2),
(x = 3, y = 8) and than (x = 3, y = −8).

30

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

• set((x, y, z), 3, ((1, 2, 3), (3, g = 8, 15), (3,−8, b = −1)), Obj); In this ex-
ample the variables x, y and z will be set for the subobject Obj sequentially
to the values (x = 1, y = 2, z = 3), (x = 3, y = 8, z = 15) and than
(x = 3, y = −8, z = −1). The domain for the set-element is the third
set-domain.

Note: Not all dependencies of several variables can be easily represented by func-
tions. Therefore, the set element offer the ability to assign multiple variables se-
quentially to sets of values.

It is conceivable, for example, to create a database object, which codes a char-
acter set (“font”). With the input parameters/variables of this database object the
letter and the display position of the letters are assignable. However, it can not be
assumed, that the input variables for the letters of a text are in a simple functional
dependenc. With the set element the input variables can be easily assigned to the
values for each letter of the text.

9.13 Matrix element

The matrix element represents a matrix. The matrix element works similar to the
set element, except that a number of counter variables is generated automatically.

Syntax:

Obj = matrix((V ariable1, . . . , V ariabled, V ariabled+1, . . . , V ariabled+i),

[DomainNr,]

((Startvalue1, Endvalue1), . . . , (Startvalued, Endvalued)),

((W1.1, . . . ,Wi.1), . . . , (W1.k, . . . ,Wi.k)), Obj1)

Description of the elements:

• d: Number of dimensions of the matrix (d ≥ 1)

• i: Number of values per set of values (i ≥ 0)

• k: Number of sets, with which the variables are set (k ≥ 0)

• V ariablev: The variables, which the matrix element defines

• DomainNr: This is the number of the domain for the matrix element. This
information is optional, the default value is 0. If no matrix domain with
that number exist, the matrix domain with the next smallest number is used.
By using different, adapted for each matrix element, domains, the memory
requirements for storing in the compressed Fib format can be optimized.

31

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

• (Startvalueh, Endvalueh): vector for the area for the (/ matrix size in)
dimension h

• Startvalueh: Start value of the counter variable for the h’th dimension

• Endvalueh: End value for the counter variable for the h’th dimension

• Wa.b with (a = 1 . . . i) and (b = 1 . . . k): This are the to set values or
variables, whith values to set

• (W1.b, . . . ,Wn.b): Vector of the to set values

• Obj1: The subobject, for which the variables V ariablei are defined and
which will be evalued for every variable assignment.

The matrix element represents a matrix with d dimensions, which elements are
sets of i values.

In the matrix element each dimension / counter / index variable V ariablec
(with c = 1 . . . d) goes through all integers of the corresponding area Startvalueh
to Endvalueh. For each integer value of the V ariableh all integer values of
the variable V ariableh−1 will be set. For each value allocation of the dimen-
sion variables (V ariable1, . . . , V ariabled) the value variables (V ariabled+1, . . . ,
V ariabled+i) will be set to the next set of values (W1.b, . . . ,Wi.b). This contin-
ues until either the dimension variables (V ariable1, . . . , V ariabled) have gone
through all of their values or there is no next set of values (W1.k+1, . . . ,Wi.k+1).
If an element Wa.b is a variable, so the V ariabled+a will be assigned according to
the value of the variable Wa.b.

If there are no value variables (i = 0), just all the values of the dimension
variables (V ariable1, . . . , V ariabled) will be set and the sets of values will be
ignored.

In listing 1 the operation of the matrix element is shown with C-pseudo code.

Listing 1: Pseudo algorithm of the matrix element
1 void evalue(matrix){
2 a = 1;
3 for (int Variable_d = Startvalue_d; Variable_d <= Endvalue_d;

Variable_d += 1){
4 ...
5 for (int Variable_1 = Startvalue_1; Variable_1 <=

Endvalue_1; Variable_1 += 1){
6 Variable_{d+1} = W_{1.a};
7 ...
8 Variable_{d+i} = W_{i.a};
9

10 obj_1(Variable_1, ..., Variable_{d+i});
11

12 a++;
13 if ((k < a) && (0 < i)){
14 return;

32

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

15 }
16 }
17 ...
18 }
19 }

Example:

• matrix((x, y, w), (1, 3), (1, 3), ((11), (12), (13), (21), (22), (23), (31), (32),
(33)), Obj1): In this example the variables x, y and w will be set for the
subobject Obj sequentially to the values: (x = 1, y = 1, w = 11), (x =
2, y = 1, w = 12), (x = 3, y = 1, w = 13), (x = 1, y = 2, w = 21),
(x = 2, y = 2, w = 22), (x = 3, y = 2, w = 23), (x = 1, y = 3, w = 31),
(x = 2, y = 3, w = 23), (x = 3, y = 3, w = 33)

• matrix((x,w), (1, 5), ((1), (2), (3)), Obj1): In this example the variables
xand w will be set sequentially to the values: (x = 1, w = 1), (x = 2, w =
2), (x = 3, w = 3) end, because no other assignments for w exists

• matrix((x,w), (1, 2), ((1), (2), (3), (4)), Obj1): The variables x and w will
be set sequentially to the values: (x = 1, w = 1), (x = 2, w = 2) end,
because no other assignments for x exists to be set

• matrix((x, y), (2, 4), (3, 4), (), Obj1): The variables x and y will be set se-
quentially to the values: (x = 2, y = 3), (x = 3, y = 3), (x = 4, y = 3),
(x = 2, y = 4), (x = 3, y = 4), (x = 4, y = 4)

Note: Matrices and vectors (one-dimensional matrices) are often used in mathe-
matics, computer science, image processing. With the matrix element for example
subimages can directly be specified as a raster image or the values of a flow chart
can be given directly.

9.14 The root-element

The root-element serves as the root-element of a Fib object. It should provide all
(enviroment) informations that are needed to evaluate the Fib object. The root-
element itself can just be contained in other root-elements, but not in other Fib
elements.

Syntax:

Rootobj = root([Multimediainformation], [Domains],

[DomainsV alues], [((InV ar1, S1), . . . , (InV arv, Sv))], Obj,

[((Identifier1, Rootobj1), . . . , (Identifiern, Rootobjn))],

[(DB_Identifier1, . . . , DB_Identifierd)], [Optionalpart])

33

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

All elements, except the actual multimedia object (main-Fib-object) Obj, are
optional and can therefore be omitted.

Description of the elements:

• Obj: The actual multimedia object (main-Fib-object), which is to be dis-
played. This in turn can represent more multimedia objects (e. g. images).

• (Identifieri, Rootobji): Identifieri is an identifier (a unique natural num-
ber), which can be used in an external part object (see obj element, in sec-
tion 9.9 on page 25). Rootobji is the associated external subobject (which
itselves begins with a root-element). If in the Obj (main-Fib-object) an ex-
ternal object is not resolved, the Identifieri will be searched for the correc-
t/same identifier as that of the external object and, if one is found, the asso-
ciated Rootobji will be used for (/resolved as) the external object. The Fib
object, which is the external object, is always the basis for the search. In the
search, first the next root-element, in which the basis Fib object is contain,
will be searched, and then successively the root-element, which contains the
last searched root-element. If in all the searched root-elements till the Fib ob-
ject root (in which all the external / Fib object exists) no matching identifier
is found, the database will be searched. If there also no matching identifier
can be found, the empty point p() will be used for the external object.

• MultimediaInformation: The MultimediaInformation contains the
necessary information for the evaluation of the multimedia data (see section
9.14.1 on page 35), this information are for example the Fib version and
database version.

• Domains: This element contains the domains for the values and variables
in the different vectors (e. g. position and property vectors) and Fib elements
(see section 9.14.2 on page 35). Thus the number of assignment possibilities
for each item is restricted, in order to determine in advance, if the available
hardware for displaying can view the multimedia object.

• DomainsV alues: Contains the domains of the values in the different vec-
tors (e. g. position and property vectors) and Fib elements (see section
9.14.2 on page 35). This limits the number of possible values and there-
fore the number of bits to store them, it makes it possible to achieve a better
compression.

• InV ari: The InV ari are the input variables for the actual multimedia object
(main-Fib-object) Obj. These are defined by the root-element for the main-
Fib object Obj and are set by external sources (such as the external object
in a Fib object). Even the top most root-element can contain input variables,
these represent degrees of freedom for the multimedia data, which have to
be set by external programs, e. g. to combine in a Fib object an archive of

34

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

images, whose partial images can be selected with an input variable InV ari,
or to choose different languages. The domain of each input variable should
be specified in the Domains part. The default domain for input variable is
integerB(16). If in the evaluation for an input variable InV ari no value is
provided, it is set to its default value Si.

• Si: Si is the default value of the input variable InV ari. If in the evaluation
for an InV ari no value is specified, the InV ari is set to the value Si. The
value Si should be part of the domain for InV ari.

• DB_Identifieri: These list can specify the identifiers of the database ob-
jects, which are used in the main-Fib-object Obj

• Optionalpart: In this fild optional information is stored, which is not re-
quired for evaluation of the multimedia data (see section 9.14.3 on page 48).
These can include the Copyrigth, author or description texts.

9.14.1 Multimedia information

The element MultimediaInformation contains information, which is absolutely
necessary for decoding the multimedia object and which the output device have to
be able to process.

Syntax: MultimediaInformation = (Fib_V ersion,Db_V ersion)

Description of elements:

• Fib_V ersion: An natural number for the version of the Fib multimedia de-
scription language, with which the multimedia object is coded. This number
will be incrased by one with every new version of the Fib multimedia de-
scription languag.

• Db_V ersion: An natural number for the version of the Fib database, which
is required for decoding the multimedia object. This number will be incrased
by one with every new version of the Fib database.

The version numbers can be mapped to a human-readable form (such as “Fib
V1.2.3”). But in the MultimediaInformation element only a integer is used,
otherwise a particular form would be defined, which would be very hard to changed
in the future. A human-readable form of the version numbers may be specified in
the optional part (see section 9.14.3 on page 48).

9.14.2 Domains

Domains = ((Name1, Dom1), . . . , (Namen, Domn))

DomainsV alues = ((Name1, Dom1), . . . , (Namek, Domk))

There are two types of domain information:

35

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

• Domains: Domains for possible values (including values of variables) an
element can contain.

• DomainsV alues: Domains for used values in elements.

The types of the domains will be discussed below in more detail.

The specification of a domain consists of two parts Namei and Domi.
The first part of the domain entry is the name Namei of the element, for which

the domain is. Elements/names that can be set for the domains are listed in table 5
on page 37.

Also listed there are the standard domains of the elements. Of the listed stan-
dard domains the scalar (sub-)domains can be changed, the number of scalar sub-
domains of a domain, however, should not be changed (if not specified otherwise).
So if the standard domain of an element is for scalars values (e. g. IntegerB),
for this element never a vector domain should be set. On the other hand, if the
standard domain of an element is for vectors with n elements, for this element only
domains should be set, which are for vectors with n elements. In this way, for
example, properties can be always interpreted in the same way. For elements (e. g.
Properties), which are not listed in table 5, the domains can of course be set freely.

The second part of the domain entry is the domain Domi to apply to the element
Namei. A list of the possible domains is given in table 6 on page 45 .

Values outside of their domain are rounded to values in the domain. The
rounded value of a (scalar) number, is the value with the minimum distance to
the not rounded value. If there are several of them, the smallest value of them is
taken, as the rounded value.

Rounding of vectors is done with their distance. The distance between two
vectors is the sum of the distances of their elements. The rounded vector of a
domain is the vector in the domain with the smallest distance from the unrounded
vector. If several vectors have a minimum distance from the unrounded vector,
the rounded vector is the vector, whose first n elements have a minimal distance
from the unrounded vector. Where n, starting from the number of elements in the
unrounded vector, is reduced by one till a vector is found or 1 is reached. If even
then more vectors remain, the rounded vector is the vector, whose k’th element is
less than the k’th element of the other remaining vectors, where k is counted from
1 to the number of elements in the vector.

If the vector to be rounded has too many elements, the number of its elements
is reduced to the correct number. Should the to round vector contain not enough
elements, the missing elements are created and assigned to the zero value of the
respective element domains.

Each domain has a null value. The null value of a scalar domain (a domain
for numbers), is the value 0 rounded to a value in the domain. For vectors the
null vector is the vector, which is generated if a vector whose elements are all 0 is
rounded to a vector in the domain.

36

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Each scalar domain has a maximum value and minimum value. The maximum
value is the highest value in the domain and the minimum value is the smallest
value.

The domains, which contain only integers, have a scale factor Scalei, which apply
for the corresponding element of the Namei. This factor Scalei is a floating point
number, with which the values of the unscaled domain are multiplied, to obtain the
scaled domain. As standard, the scaling factor 1 is assumed. The scaling factor is
useful for example, if the horizontal dimension should not be measured in meter m
but in milli meter mm or when the temperature is not given in degrees Kelvin, but
in tenth of a degree Kelvin.

In the following notation the scale factor is indicated by the notation, that the
domain is multiplied with it “∗”. A Skalierungsfaltor of 1 is not specified here. For
example, “integerB(16) ∗ 2−16” means that the 16-bit integer domain is scaled
with the scaling factor 2−16. In contrast “integerB(16)” means that the scaling
factor is 1, that is the domain is not scaled.
Example: The basis domain is for integers from 0 to 3 (which are 4 values) with
the scaling factor F = 1/2 . Possible values are: { 0 ∗ 1/2 = 0; 1 ∗ 1/2 = 0.5;
2 ∗ 1/2 = 1; 3 ∗ 1/2 = 1.5 }. If a number in an element for the domain is for
example unscaled 1, it is interpreted as the scaled number 0.5 .

37

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Description Standard domain
dim(Dim,
Dimmap1,
. . .,
DimmapDim

)

This is the domain for position
vectors. The number Dim is
the number of dimensions respec-
tively elements of a position vec-
tor. The value Dimmapi is an in-
teger, which determines, in which
direction the dimension i will be
mapped (see table 7 on page 46 for
the possible values, there numerical
values are specified [in the “value”
column]). The domain is a vec-
tor with Dim numbers (or scalars).
The default value for the number
of dimensions Dim is 2, it will
be used, if no domain is specified
for position vectors. Then (stan-
dard case) the first dimension points
in the horizontally direction and
the second dimension in the verti-
cally direction. Regardless of this,
the direction value Dimmapi of
the domains for elements Domains
(also inherited) overrides the value
domains DomainV alues. Nor-
mally, however, the direction spec-
ifications should be the same for all
position vector domains.

vector(2, integerB(16),
integerB(16))

subfunction values which can appear in subfunc-
tions

integerB(16)

area domain for the area element (see
section 9.6 on page 16)

vector(2, naturalNumberB(8),
vector(2, integerB(16),
integerB(16)))

inVar(i) domain for the i’th input variable
(InV ari)

integerB(16)

set zeroth domain for set-elements vector(3, naturalNumberB(8),
naturalNumberB(32),
vectorOpenEnd(
integerB(32)))

set(i) i’th domain for set-elements vector(3, naturalNumberB(8),
naturalNumberB(32),
vectorOpenEnd(
integerB(32)))

38

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Description Standard domain
matrix zeroth domain for matrix elements vector(4, naturalNumberB(8),

naturalNumberB(32),
vector(2, integerB(8),
integerB(8)),
vectorOpenEnd(
integerB(32)))

matrix(i) i’th domain for matrix elements vector(4, naturalNumberB(8),
naturalNumberB(32),
vector(2, integerB(8),
integerB(8)),
vectorOpenEnd(
integerB(32)))

externSubobject(
Number)

The domain for the external subob-
ject with the given number (see sec-
tion 9.10 on page 26) of the mul-
timedia object. The output val-
ues of the external subobject with
the given number can be set to
the values of this domain. In the
main-Fib-object Obj for each ex-
ternSubobjectOutput domain exter-
nal subobjects with the given num-
ber can exist. Also for each exter-
nal subobject (each number) in the
main-Fib-object Obj an externSub-
objectOutput domain with the num-
ber should exist. At least for the
external subobjects with the high-
est number an externSubobject do-
main have to be created, so that it
is known, how much external sub-
objects in the main-Fib-object Obj
exists. The externSubobjectOutput
domain isn’t inherited by other root-
elements.

vector(0)

property(
Name)

domain of the properties for the
given Name; see table 2 on page
12 for the possible names (Name)

dependent of the type (Name)
of the property

property(
whatever)

The properties of the points dosn’t
matter. Whatever properties are as-
signed to a point with this property,
they are correct.

vector(0)

39

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Description Standard domain
property(
colorRGB)

domain for RGB-colors vector(3,
integerB(8), integerB(8),
integerB(8))

property(
col-
orGrayscale
)

domain for monocrome colors vector(1, integerB(8))

property(
layer)

number of possible layers vector(1, integerB(4))

property(
transparency
)

transparency of the points vector(1, integerB(8))

property(
persistent)

This property is only useful for a pe-
riod of time. Points in space with
this property only lose their other
properties, if they are overwritten
by a respective property of the same
type. This of however is only the
case, as long as the particular point
has the property persistent. This
property is for example useful, if in
a movie objects should be visible as
long as they are not overwritten by
other objects. In this case, the en-
tire background can get the property
persisted. If an object is defined
and displayed at a time, it will be
there in the future as long as it won’t
get overwritten. (The possible val-
ues are 1 for persistent and 0 for non
persistent.)

vector(1, integerB(1))

property(
sound)

a sound; the values are: 1. fre-
quency in Hertz (1/s), 2. sound
pressure in Pascal Pa (1Pa =
1N/m2), 3. phase shift in radians,
4. duration in seconds; a sound is
additive to other sounds

vector(4, integerB(16),
integerB(32), integerB(16) ∗
2−16, integerB(32) ∗ 2−8)

40

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Description Standard domain
property(
sound-
Polarized
)

a sound; the values are: 1. fre-
quency in Hertz (1/s), 2. sound
pressure in Pascal Pa (1Pa =
1N/m2), 3. phase shift in radi-
ans, 4. duration in seconds; r = 5
to (3 + ♯Dim) polarization fraction
(as an angle in radians) in the di-
mension plane, which is spanned by
the respective dimensions r− 4 and
r − 3 (♯Dim is the number of di-
mensions), the angle origin is the
r − 3 axis and goes in positive di-
rection; a sound is additive to other
sounds

vector(3 + Dim,
integerB(16), integerB(32),
integerB(16) ∗ 2−16,
integerB(32) ∗ 2−8,
[integerB(16) ∗ 2−16]Dim−1)

property(
soundAmpli-
tude)

the amplitude of a sound; the val-
ues are: 1. sound pressure in Pascal
Pa (1Pa = 1N/m2), 2. phase shift
in radians, 3. duration in seconds;
a sound is additive to other sounds;
With this properties sounds can be
build by their amplitude with a spe-
cific sampling rate, such as in the
WAVE file format.

vector(3, integerB(32) ∗ 2−16,
integerB(0) ∗ 1/44100,
integerB(8) ∗ 2−16)

property(
soundBar-
rier)

speed of sound in meters per sec-
ond (m/s); With this property ob-
jects can change the acoustics.

vector(1, integerB(16))

property(
soundReflected
)

fraction of sound reflected from the
object; This property applies to the
surface/the edge of the object and
not for all his individual points

vector(1, integerB(16)∗2−16)

property(
sound-
Damping
)

fraction of the sound swallowed by
a point

vector(1, integerB(16)∗2−16)

property(
kelvin)

temperature in Kelvin vector(1, integerB(16) ∗ 2−4)

41

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Description Standard domain
property(
electro-
Magnetic
)

an electromagnetic radiation
source, the values are: 1. frequency
in Hertz (1/s), 2. amplitude in
Candela cd, 3. phase shift in
radians, 4. duration in seconds,
r = 5 to (3 + sharpDim), r =
5 to (3 + ♯Dim) polarization
fraction (as an angle in radians)
in the dimension direction, which
is spanned by the respective di-
mensions r − 4 and r − 3 (♯Dim
is the number of dimensions), the
angular information is provided by
the r − 3 axis in positive direction,
an electromagnetic wave is additive
to other electromagnetic waves

vector(3 + Dim,
integerB(64), integerB(64) ∗
2−16, integerB(16) ∗ 2−16,
integerB(32) ∗ 2−8,
[integerB(16) ∗ 2−16]Dim−1)

property(pe-
riodBegin)

Time in seconds (s) from the begin-
ning of the whole multimedia ob-
ject, from which the object is to
be displayed; if possible, this prop-
erty should be near the root of the
multimedia object; when a multi-
media object is played it can be de-
termined with this property: the or-
der in which subobjects should be
evaluated and/or till which time to
evaluate a part object

vector(1, integerB(24) ∗ 2−8)

property(pe-
riodEnd)

Time in seconds (s) from the begin-
ning of the whole multimedia ob-
ject, till which the object is to be
displayed; if possible, this property
should be near the root of the multi-
media object and follow a “period-
Begin” property; when a multime-
dia object is played it can be deter-
mined with this property: the order
in which subobjects should be eval-
uated and/or till which time to eval-
uate a part object completely

vector(1, integerB(24) ∗ 2−8)

42

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Description Standard domain
property(
evalua-
tionTime
)

Time required for evaluating a mul-
timedia object, in proportion to a
multimedia object, which contains
only one point (the value should be
seen as a multiple of the evaluation
time of a point); with this property
in combination with the properties
“periodBegin” und “periodEnd” a
good evaluation order and time can
be evalued for the partobjects, when
playing a multimedia object; this
property should stand immediately
after (or below/within) the “period-
Begin” and “periodEnd” properties

vector(1, integerB(24))

property(
checksum)

A checksum for the object will be
generated. The first parameter de-
termines the type of the checksum.
The second parameter specifies any
which number of bits, a checksum
is to be generated, and the third pa-
rameter defines how many bits the
checksum is long. The last block of
the checksum will be padded with
0 after loading the blocks, so that it
too has the desired length. If there
are enough bits to correct an exist-
ing error, it will be attempted to cor-
rect the error. (see section 21.3.3 on
page 104)

vector(3, integerB(4),
integerB(8), integerB(8))

property(
boundSize)

For the part object the border/size
in bits will be stored, when saving
it. If an error occured while loading
the part object, the (in the bitstream
after the faulty part object) follow-
ing part objects can still be loaded,
because their beginning is known.
(see section 21.3.3 on page 105)

vector(0)

Table 5: Names of elements for domains

43

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Domain name Description Domain
naturalNumberB(X)
* S

X bit integers without sign (natural
numbers), which are scaled with S

0 . . . S ∗ (2X − 1)

integerB(X) * S X bit integers with sign, which are
scaled with S

S ∗ −(2X−1) . . . S ∗
(2X−1 − 1)

naturalNumberB(32) 32 bit integers without sign (the
scaling factor is not shown, because
it is 1)

0 . . . 4294967295

integerB(32) 32 bit integers with sign −2147483648 . . .
2147483647

naturalNumber(X)
* S

integers in the range from 0 to X
(without sign), which are scaled
with S

0 . . . S ∗X

integer(X, Y) * S integers in the range from X to Y ,
which are scaled with S

S ∗X . . . S ∗ Y

integerValues(
X1, . . . , XN) * S

all given integers Xi, which are
scaled with S

{S ∗X1, . . . , S ∗XN}

naturalNumberUL()
* S

unlimited positiv integers, which
are scaled with S

all positiv natural num-
bers

integerUL() * S unlimited integers, which are scaled
with S

all integers

real(DM , DE) The domain for floating point num-
bers. A floating point number con-
sists of two integer fields, the first
is for the exponent E and the sec-
ond for the mantissa M . The float-
ing point number Z is then Z =
M ∗2E . The domains DM and DE

are the domains for the integers, de-
fined like above (e. g. integerB(8)).
The domain DM is the domain for
the values of the mantissa and DE

is the domain for the values of the
exponent.

{min(DM) ∗
2min(DE), . . . ,max(DM)∗
2max(DE)}

realValues(X1, . . . ,
XN)

all given floating point numbers Xi {X1, . . . , XN}

realUL() all floating point numbers all floating point numbers
vector(
E,D1, . . . , DE)

a vector with E elements, in which
the i’th element has the domain Di

(D1, . . . , DE)

44

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Domain name Description Domain
vectorValues(
D1, . . . , DT ;
V1, . . . , Vn)

The basis domain are vectors. The
given vectors Vi are all possible
vectors in the domain. The domain
Di is the domain of the i’th vector
element (if it isn’t a variable). If
a variable is given as a vector el-
ements the varible identifier is left
out (omitted).

{V1, . . . , Vn}; for
i = 1, . . . , n
Vi = (E1, . . . ET); with
Ef ∈ Df , f = 1 . . . T

vectorOpenEnd(
E,D1, . . . , DE)

This is the domain for vectors with
E or more elements, in which the
i’th element has the domain Di,
for i lower E, and else the domain
DE . This domain is for elements,
which can contain vectors of diffent
sizes. The number of elements in
the vector should be determined by
the containing Fib element.

(D1, . . . , DE , . . . , DE)

domainReference(
Name.[Element]*)

The domain is the domain of
the Element of the given domain
name Name. With the Element
parameters a subdomain can be
choosen (e. g. set.3.1 for
the first subdomain of the third
subdomain for the set-element or
property(colorRGB).2). If no
domain for the element with the
Name exist, the default domain of
the element is taken. If there is
not even standard domain the gen-
eral standard domain is used. If
ther is no subdomain for Element,
the last subdomain for Element is
used, that still exists.

the (Element sub-
)domain for the element
with the domain name
Name

defaultDomain(
Domain)

The domain Domain is used, if no
other domain exists for the corre-
sponding element.

Domain if no other do-
main exists for the corre-
sponding element

Table 6: Possible domains

45

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Name Value Description
none 0 No mapping, respectively it will be mapped to

nowhere.
horizontal 1 The dimension goes in the horizontal direction.

Lower values are left.
vertikal 2 The dimension goes in the vertikal direction. Lower

values are down.
depth 3 The dimension goes in the direction of depth. Lower

values are in direction back.
time 4 The dimension stands for the time. Lower values are

in the past.
anywhere 16 The dimension can be mapped in every dimension

or direction.
Product Dimensions 256 to

511
Dimension which are product specific. Different
producers can use these dimensions, without getting
incompatible with later defined dimensions.

Table 7: Directions for dimensions

Domains for Elements With the domains for elements Domains, all possible
values are specified, which an element may take, no matter whether this value is
explicitly specified or is given by a variable. So the Domains specify all values,
that can be taken by elements. The minimum and maximum values are determined
with it. The presentation of the multimedia device may be adapted/scaled to these
values. If for example, a film should be displayed on a 100 cm (centimeters) wide
screen display and the dimension of the horizontal direction is given as from -5 m
(meters) to +5 m, then points at the horizontal value -5 m in the Fib object will be
displayed at 0 cm on the screen and +5 m will be displayed at 100 cm (0 m at 50
cm, etc.).

For the display the domains of the top most root-element are crucial. Contained
root-elements can also specify the domains, but these are ignored when the Fib
object is display. Therefore, the top most root-element must specify all domains
relevant for the displaying the Fib object.

The in Domains contained domains are inherited by the in the current root-
element contained root-elements. Contained root-elements may also overwrite all
inherited domains. The input variables InV ari are root-element specific (they are
not valid in any contained root-elements), their domains are therefore not inherited,
because this is neither reasonable nor desirable.

When a domain for an element of the Fib object is not given or inherited, it
has as its domain its default domain. If there is no default domain for a particular
element, its default domain is integerB(16).

Another special feature arises, when the database objects inherit domains. Even

46

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

for root-elements of database objects, it is useful to adopt domains for some ele-
ments. This is usfull for example for the dimensions of a database object, which
should eventually be adopted to the displayed multimedia object. If for example a
database object is a general triangle, wher its size and key points are set by input
parameters, the dimensions for this database object can not be determined in a rea-
sonable manner. For this reason, the inheritance of domains for a database object
will be treated as if the database object is a sub-root-object in the root-element,
in which the main-Fib-object uses the database object. Thus the database object
inherits the domains, which are also valid for the external subobject element, for
which it is used.

Thus in the top most root-element of a Fib object (such as a database ob-
ject), domains can be omitted if they are determined by the calling/using Fib
objects or mechanism. For these Fib objects the corresponding value domains
DomainsV alues should be given for the missing domains in their top most root-
element, in order to be able to store the objects.

Domains for values In the domains of the element values DomainsV alues, all
values are given, which may be take by an actual value in an element. These do-
mains are therefore not for values, which are supplied by variables. The list of
DomainsV alues with domains for values determines the storage space require-
ments for individual values and is therefore hereinafter also called memory do-
mains. Since the values in the elements, may not take all values in the domains,
for example, if mostly variables are used in the elements, the number of different
actual values in the elements may be well below the possible values in the domain
of the element Domains. It is for example possible that a RGB color image with
256 ∗ 256 ∗ 256 = 16, 777, 216 possible colors only use 16 colors. To store the
16,777,216 colors of the domains 24 bits are needed, but for the 16 colors, only 4
bits are enough (similar to indexed colors in images).

The domains for values DomainsV alues are inherited from the domains for
elements Domains of the same root-element. If for an element no domain in
DomainV alues is given, the domain of Domains is taken for the values of the el-
ement. The domains, which Domains inherits, are passed down to DomainsV alues.
Precedence in inheritance, however, have from the same root-element (such as the
Domains) inherited DomainsV aluesâĂŃ. Inherited will be always the domain
for an element, which appears next in the current or next higher root-elements.

Or also: For a root-element the DomainV alues will be inherited from the
specified domains of Domains of the same root-element. Still missing domains
in DomainV alues will be inherited from the, possibly inherited, domains of the
DomainV alues of the next higher root-element.

The in DomainsV alues specified domains must be compatible with the corre-
sponding domains in Domains. For example, the number of elements in a vector
in a domain for an element in DomainV alues have to be the same as in the cor-
responding (possibly inherited) domain in Domains. In particular, a domain for

47

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

values from DomainsV alues for an element has to be a subset of the (general)
domain of Domains for the element. (Elements may only take values, for which
they are defined.)

9.14.3 Optional part

The Optionalpart contains values, which are not necessary for the display of mul-
timedia information. These optional data can be for example: version of the gen-
erator, Copyrigth, author, creation date, descriptions, texts, names and comments
(which are outsourced here, because of the compression). To save memory space,
the Optionalpart can be compressed or even entirely omitted.

Syntax: Optionalpart = ((Key1, V alue1), . . . , (Keyn, V aluen))

Description of the elements:

• Keyi: This is the key of the ith information set. Some possible keys are listed
in table 8. The key should not start with a “@”, this character is reserved for
outsourced data.

• V aluei: This is the value of the ith information set.

Key Description Example
author author of the Fib object (author, “Oesterholz”)
author::email E-mail address of the author (author::email

, “author@Fib-
development.org”)

author::adress address of the author (author::adress , “Example
City 123456; Example Road
13”)

author:: tele-
phon

phone number of the author (author::telephon,
“123/456/789124”)

type type of object (type, “tree”)
description description of the object (description, “this is me

while fishing”)
name the name of the object (name, “Eifelturm”)
copyright copyright of the object (copyright, “GPL3 ...”)
version::fib This is the human readable form of the ver-

sion of the Fib multimedia language, which
is required for loading the Fib multimedia
object.

(version::fib, “Fib V1.2.3”)

version::fibDb This is the human readable form of the ver-
sion of the Fib database, which is required
for loading the Fib multimedia object.

(version::fibDb, “Fib DB
V1.2.3”)

version::-
enviroment

This is the human readable form of the ver-
sion of the genetic algorithm, which was
used to code the Fib multimedia object (see
Section III on page 71).

(version::enviroment, “Fib
Env V1.2.3”)

48

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Key Description Example
inVarX::N::Art This are the information for the Fib object,

if the input variable InV arX will be set to
the value N .

(inVar1::17::..., “...”)

inVarX::N::-
description

The value contains description for Fib ob-
ject, if the input variable InV arX will be
set to the value N .

(inVar2::8::description ,
“This picture shows the
weather on the third day.”)

inVarX::N::typ The entry specifies the type of Fib object,
if the input variable InV arX will be set to
the value N .

(inVar2::2::typ , “picture”)

inVarX::N::-
identifier

The value is the identifier of the root-
object, which is used, when the input vari-
able InV arX will be set to the value N .
The main-Fib-object should call the appro-
priate root-object as an external object di-
rectly, without using others Fib elements
except if- and root-elements.

(inVar2::4::identifier , “3”)

inVarX::-
dimensionD::-
points

The input variable InV arX is used to in-
dicate the number of points in dimension
D. The value of D is the number of the
dimension of the root-element (the count-
ing starts at 1), for which the resolution
applies. The specified value indicates the
number of points that are displayed by de-
fault. For example, if the Fib object repre-
sents an image and in the first dimension
direction by default 1000 points are dis-
played in a line, the text is as shown in the
example.

(inVar3::dimension1::points
, “1000”)

inVarX::-
dimensionD::-
resolution

The input variable InV arX is used to
specify the resolution of dimension D in
points per unit of the SI unit of the di-
mension. The value of D is the number
of the dimension of the root-element (the
counting starts at 1), for which the resolu-
tion is. The specified value is the resolu-
tion that is set by default. For example, if
the Fib object represents an image and the
first dimension is by default displayed with
10000 points per meter (= 10 dots per mm),
the resolution is 10000 as shown in the ex-
ample.

(inVar3::dimension1::-
resolution , “10000”)

inVarX::N::-
language

The input variable InV arX is used to set
the language. It should be set to the value
N for the specified language.

(inVar1::1::language , “en-
glish”)

inVarX::N::-
subtitle

The input variable InV arX is used to set
the subtitle. It should be set to the value N
for the given subtitle.

(inVar2::1::subtitle , “ger-
man with comments”)

49

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Key Description Example
inVarX::N::-
feature

The input variable InV arX provides a fea-
ture /enhancements of the original multi-
media object. It has the value N for the
given feature. Better and newer features
should be assigned higher values of N.

(inVar2::1::feature , “The ta-
ble has now its true color.”)

inVarX::N::-
bugfix

The input variable InV arX provides a bug
fix of the original multimedia object. It has
the value of N for the specified bug fix.
Better or more recent bug fixes should be
assigned higher values of N.

(inVar2::3::bugfix , “The car
in the background is not
blurred.”)

inVarX::Type The input variable is of a certain type, re-
gardless of its value. As type, the above
listed can be used (e. g. description,
type, identifier). This allows that keys of
the form “inVarX::N” can be used, without
giving the type of the input variable each
time.

(inVar1::bugfix, “The color
of the penguin is corrected.”)

inVarX::N This are the information for the Fib object,
if the input variable InV arX is set to the
value N . The type of input variable should
be set with “inVarX::Type”.

(inVar1::17, “The penguin
has a black back and not a
dark blue.”)

inVarX::random The input variable InV arX should be set
a random value from its domain.

(inVarX::random, “”)

subObjN::-
description

This is a description of the N-th subobject,
that is a Fib object, that should be provided
from outside for this root-element. The
counting of the subobjects starts at 1, wher
each list of output variables OutV arvk
represents a subobject.

(subObject1::description ,
“This partial image is shown
in the upper right corner on
a mountain.”)

subObjN::-
outVarX::-
description

This is a description of the X-th output
variable for the N-th subobject.

(subObj2::outVar3::-
description , “The hori-
zontal coordinate, at which
the integrated image will be
displayed.”)

preview::XXX Among the contained root-objects, there
may be some who are not used to encode
the multimedia object, but are previews for
the multimedia object. Ther can be any
number of preview subobjects. To recog-
nize this quickly, the optional part can con-
tain a “preview” entry. The value of the
entry is the Identifier of the root-object,
which encodes the preview. The second
part of the key (here XXX) is arbitrary
and should indicate the type of preview.
The “preview” entries in the optional part,
should be at the beginning of the optional
part, in order to get them faster.

(preview::minipicture , “1”)

50

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

Key Description Example
preview::-
minipicture

The root-object to the specified identifier is
a preview image (no size specified).

(preview::minipicture ,
“17”)

preview::-
minipictureX

The root-object to the specified identifier is
a thumbnail with X times X pixel size.

(preview::minipicture32 ,
“5”)

isPointElement The object returns the data of the points
with point elements. (Counterpart is the
key “isPointSubObject”)

(isPointElement , “”)

isPointSubObject The object returns the data of the points
with a subobject (subobject elements). The
value is the number of the subobject for the
points data. If ther is no value given, the
first subobject is for returning the points
data. (Counterpart is the key “isPointEle-
ment”)

(isPointSubObject , “”)

isAntialiased The represented multimedia object is an-
tialiased. (Counterpart is the key “isNot-
Antialiased”)

(isAntialiased , “”)

isNotAntialiased The represented multimedia object is not
antialiased. (Counterpart is the key “isAn-
tialiased”)

(isNotAntialiased , “”)

DbObject::XXX The value to the key is the identifier (a
number) of the object, which is identical
to this object except for the XXX property.
Possible values for XXX are for example
“isPointSubObject” or “isAntialiased”. If
the actual object has no antialiasing, the
object with the identifier of the value for
the “DbObject::isAntialiased” key has, but
is otherwise identical.

(DbObject::isAntialiased ,
“-56”)

Table 8: Keys for the optional part

9.14.4 Order of the root-Elements

All root-elements are arranged in a certain order. First in this order comes the
highest root-element and then the root-elements contained in it, with their contain-
ing root-elements in the order they are defined in the respective root-elements. In
diagram 1 an example of the order of the root elements is shown.

For each Fib object all root-objects are visible, that stand after the Fib objects
(in the root-elements) in which it is contained, and the root-objects in the database.

If an external object in a Fib object should be resolved, first the identifiers in
the next root-element, in which the Fib object is contained, are searched, then the
identifiers in the next higher root-element, and so on. For this only identifiers are
checked, which are after the identifier for the root-object, in which the Fib object is

51

9 ELEMENTS OF THE FIB MULTIMEDIA DESCRIPTION LANGUAGE

root1

root root3 root7

root4 root5 root8

root6

2

Figure 1: Example: Order of the root-Elements

contained. The main-Fib-object is befor all contained root-objects (with identifiers)
of a root-element. In the end, the database objects are checked.

Example: The following root-element structure is given:

root0 = root(. . . , Obj0, ((1, root1), (2, root2), (3, root3)), . . .)

root1 = root(. . . , Obj1, ((11, root11)), . . .)

root11 = root(. . . , Obj11, ((111, root111)), . . .)

root111 = root(. . . , Obj111, (), . . .)

root2 = root(. . . , Obj2, ((21, root21)), . . .)

root21 = root(. . . , Obj21, (), . . .)

root3 = root(. . . , Obj3, ((31, root31)), . . .)

root31 = root(. . . , Obj31, (), . . .)

The root-element root0 is the top most root-element. The following list lists for
some Fib objects, which identifiers and thus root-objects they can use in external
objects or which root-elements can be resolved and are visible for them. (The Fib
database is not considered here. Root-objects in the database would be visible for
all Fib objects.) The identifier and the root-elements are specified in the order they
are traversed in the search.

• Obj0: (1, root1), (2, root2), (3, root3)

52

10 THE FIB DATABASE

• Obj1: (11, root11), (2, root2), (3, root3)

• Obj11: (111, root111), (2, root2), (3, root3)

• Obj2: (21, root21), (3, root3)

• Obj21: (3, root3)

• Obj3: (31, root31)

• Obj31: none

10 The Fib database

The Fib database does not belong to any Fib multimedia object. It is supplied with
the Fib libraries / the Fib system and contains frequently used database objects,
which can be used in Fib objects. Fib objects can use the database objects, without
including these database objects (Fib objects). Database objects can be for example
lines (with the input parameters for start and end points), rectangles or circles, but
also trees, cars, character sets (fonts) or fractals. If for example a circle is needed
for a Fib object, a corresponding parameterized database object can be used.

The implementation of the database objects can be adapted to the application
environment. If for example for the display OpenGL is used, the database objects
can be implemented directly with OpenGL primitives (e. g. triangles). In this man-
ner with database objects the application performance can be improved. During the
coding of the Fib objects this can be directly taken into account, by using database
objects that have a good performance for the target application /program. These
Fib objects are still viewable on all systems /with all programs with a high enough
Fib database version, but on some faster.

Which objects, and identifier for these objects, a database contains, is deter-
mine by the database version. Databases with a higher database versions contain
at last all database objects with the same identifiers, as databases with a lower
database versions. In this way, it is ensured, that Fib objects are always forward
compatible with newer database versions.

All identifiers for database objects are negative.

11 Definitions for Fib

In this section some definitions for the Fib multimedia language are given. These
should improve the handling and understanding of Fib.

53

11 DEFINITIONS FOR FIB

11.1 Definition of: correct Fib object

An Fib object is correct, if it meets the above Fib syntax, all the variables, which
it contains, are defined above it and each contained Fib element is a correct Fib
element. An correct root-element must belonge to the correct Fib object. For a
Fib element to be correct, it must fit its root-element (that is, among other things,
correct [number of] dimensions and domains).

Correct Fib objects are also referred to shortly as Fib objects.

A Fib element suits the above presented Fib syntax, except that no Fib elements
are contained in it.

In the following examples, comments are introduced with “//”. These are not part
of the displayed Fib elements.

Examples:
Correct Fib objects (It is assumed that the associated root-element is correct and
fits.):

Obj = pr((3)colorGrayscale, p((1; 5)))

Obj = list(for(y, [(4; 2)], pr((3, 42, 125)colorRGB, p((7; y))),

fun(x, add(mult(4, exp(3,−2)), 2), pr((205, x, x)colorRGB, p((3;x))))

Fib elements (Elm):

Elm = p((3; 2; 5))//3-dimensional

Elm = for(x, [(3; 8)], null)

//null is not an object (in the implementation it is a null pointer)

Elm = p((2; 5))

Neither a Fib element nor a correct Fib object (Woe, null is no object [in the
implement it is a null pointer]) :

Woe = list(for(x, [(3; 7)], null), null)

Woe = fun(x, add(4, exp(6, 3)), for(y, [(6; 7)], null))

Woe = pr((3)colorRGB, p((1; 5))) : //invalid syntax

Property element: The colorRGB vector requires

3 parameters /elements.

54

11 DEFINITIONS FOR FIB

11.2 Definition of: complete Fib object

A complete Fib object is a Fib object, which represents a displayable multimedia
object. Each complete Fib object is also a correct Fib object. A complete Fib
object also includes, all necessary root-elements with the entries for the correct Fib
version and Fib database version.

11.3 Definition of “below” and “above” in a Fib object

You can imagine a Fib object as a tree, wher the branch elements (e. g. root and the
list elements) representing the branches in the tree. Because in computer science
in general the root is displayed at the top, the Fib elements, which are contained
in an element Elm, are below it, and the Fib elements, which are containing the
element Elm, are above it.

Below a Fib element Elm means, that the elements are meant, that the element
Elm directly or indirectly contains. In contrast, above a Fib element Elm are the
Fib elements, that are containing the Fib element Elm directly or indirectly.

This is illustrated in figure 2. The list element in the middle, which is marked
with 1 is the element with respect to which above and below is determined.

11.4 Order of the Fib elements

On the definitions of “below” and “above” in a Fib object the order of Fib elements
is established. To each Fib element in the complete Fib object an unique natural
number is assigned. If in a Fib object N elements exist, the numbers 1 to N will be
assigned to the Fib elements in the Fib object. Fib elements below a Fib element
are assigned to higher values.

If a list element subobject ObjU has a higher number U as another subobject
ObjK (U > K) of the list element, it also contains Fib elements with higher
numbers as the Fib elements in ObjK . The root-elements are treated the same way
in the order as list elements, with the main-Fib-object as the first subobject after
which the sub-root-objects follow in ther succession (in the root-element).

The same applies for any other branch element. The above defined syntax
determines the order of the subobjects.

In figure 3 a sample object with the corresponding numbers (next to the ele-
ments) for the order of the Fib element is shown.

11.5 Order of particular Fib elements

Also Fib elements of a given typs are assigned to natural numbers of an order for
there type. These orders are based on the order of the Fib elements. If in a correct
Fib object N Fib elements of a type exist, the numbers 1 to N are assigned to the
Fib elements of this type. If to a Fib element Elm1 in the order of the Fib elements
a higher value is assigned (as to another Fib element Elm2 of the same type), so it

55

11 DEFINITIONS FOR FIB

root

area

list

listfunction

point

function

point function

point

function

point

obj1 obj2 obj3

obj1 obj2

1
above

below

Figure 2: Example for “below” and “above” in a Fib object

56

11 DEFINITIONS FOR FIB

root

area

list

listfunction

point

function

point function

point

function

point

obj1 obj2 obj3

obj1 obj2

1

4

3

2

5

6

7

8

11

12

9

10

Figure 3: Example: Order of the Fib elements

57

11 DEFINITIONS FOR FIB

(Elm1) is assigned to a higher value in the order of the Fib elements of the same
type (than the other Fib element Elm2).

In figure 4 an example object with the corresponding numbers (next to the
elements) for the order of particular Fib element is shown.

root

area

list

listfunction

point

area

point function

point

function

point

obj1 obj2 obj3

obj1 obj2

1

1

1

1

1

2

2

2

3

4

2

3

Figure 4: Example: Order of particular Fib elements

11.6 Order of move points

Another order applies to all Fib elements that can be moved. These are called move
points. The orders of the move points is based on the order of the Fib elements. If
in a complete Fib object N move points (movebel Fib elements) exist, the numbers
1 to N are assigned to these movebel Fib elements. If to a movebel Fib element
Elm1 in the order of the Fib elements a higher value is assigned (as to another
movebel Fib element Elm2), so it (Elm1) is assigned to a higher value in the

58

11 DEFINITIONS FOR FIB

order of the movebel Fib elements (than the other Fib element Elm2).

Fib elements, which can be moved and represent move points, are all limb elements
(they are containing exactly one subobject):

• property element (see section 9.3 on page 7)

• comment element (see section 9.5 on page 14)

• area element (see section 9.6 on page 16)

• functions (see section 9.7 on page 17)

• Fib elements, to retrive domain properties (see sectiont 9.11 on page 27)

• set-element (see section 9.12 on page 30)

• matrix element (see section 9.13 on page 31)

Fib elements, which can’t be moved and don’t represent move points, are:

• all leaf elements:

– points (see section 9.2 on page 6)

– Fib elements to call external subobjects (see section 9.10 on page 26)

• all branch elements:

– root-element (see section 9.14 on page 33)

– list element (see section 9.4 on page 14)

– the Fib element, to call external objects (see section 9.9 on page 25)

– conditions with the if-element (see section 9.8 on page 24)

In figure 5 an example object with the corresponding numbers (next to the
elements) for the order of move points is shown.

11.7 Definition: part object

Any object that is a whole branch (e. g. a sub-list object, main-Fib-object or sub-
root-object) of a branch element is part of a part object. Furthermore, to the part
object belong all root-elements, in which it is contained or which it uses for external
objects. Even Fib elements, which define variables that are used in the part object,
belong to it. The union of two part objects is again a part object. The complete
Fib object itself is also a part object. A part object can always be evaluated to a
multimedia object.

A genuine part object is a part object, that is not the (complete) Fib object
itself.

59

11 DEFINITIONS FOR FIB

root

area

list

listfunction

point

area

point function

point

function

point

obj1 obj2 obj3

obj1 obj2

2

1

3

4 5

Figure 5: Example: Order of move points

60

11 DEFINITIONS FOR FIB

A simple part object is a genuine part object, that contains only one leaf with
one point object.

A coherent part object is a genuine part object that contains the whole object
of one branch (subobject), of just one branch element (e. g. list element or root-
element) and the required elements above it. In particular, every simple object is a
coherent subobject.

To create a coherent part object, one branch element (for example list element
or root-element) from the complete Fib object can be deleted and replaced by one
of the subobjects contained in it. The resulting subobject must of course be correct,
to be a coherent part object. (For example, if the main-Fib-object of a root-element
is deleted, the result isn’t a coherent part object. Also if a sub-root-element is
deleted, and the next above main-Fib-object is replaced by its main-Fib-object, the
domains of the replace root-element should be adapted by the next root-element.)

With figure 6 this definition is illustrated with an example of a Fib object. In
the following, some examples of different types of part objects in Figure 6 are
being given, for the Fib elements their numbers (from the Fib element order re-
spectively figure 6) are given. Furthermore, it is establish that the point element
with the number 10 does not use the variable that is defined by the area element
with the number 2. All other variables are needed in the points, which are below
the respective variable definitions.

Part objects:

• 1; 2; 4; 5

• 1; 2; 6; 7

• 1; 2; 3 (just subobjects 1 and 2); 4; 5; 6; 7

• 1; 9; 10

• 1; 2; 8; 9; 10; 11; 12

• 1; 2; 3 (just subobjects 1 and 3); 4; 5; 8; 9; 10; 11; 12

• 1; 2; 3 (just subobjects 1 and 3); 4; 5; 11; 12

• (all Fib elements) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12

Genuine part objects:

• 1; 2; 4; 5

• 1; 2; 6; 7

• 1; 2; 3 (just subobjects 1 and 2); 4; 5; 6; 7

• 1; 9; 10

61

11 DEFINITIONS FOR FIB

root

area

list

listfunction

point

function

point function

point

function

point

obj1 obj2 obj3

obj1 obj2

1

4

3

2

5

6

7

8

11

12

9

10

Figure 6: Example object for part objects

62

11 DEFINITIONS FOR FIB

• 1; 2; 8; 9; 10; 11; 12

• 1; 2; 3 (just subobjects 1 and 3); 4; 5; 8; 9; 10; 11; 12

• 1; 2; 3 (just subobjects 1 and 3); 4; 5; 11; 12

Simple part objects:

• 1; 2; 4; 5

• 1; 2; 6; 7

• 1; 9; 10

• 1; 2; 11; 12

Coherent part objects:

• 1; 2; 4; 5

• 1; 2; 6; 7

• 1; 9; 10

• 1; 2; 11; 12

• 1; 2; 8; 9; 10; 11; 12

11.8 Order of the coherent part objects

There is an order on the coherent part objects as well. This will hereinafter also
called order of part objects, as there are no own orders for the other types of part
objects.

The orders of the (coherent) part objects is based on the order of the Fib ele-
ments. If in a complete Fib object N (coherent) part objects exist, the numbers 1
to N are assigned to these part objects. The greater the number of a coherent part
object, the greater is the smallest number in order of the Fib elements, of the Fib
elements in it. Or: If to the top most Fib element of the subobject, which defines
the coherent part object, a higher value assigned, than the defined part object is also
associated with a higher value.

In figure 7 an example object with the corresponding numbers (next to the
defining subobjects of the part objects) for the order of (coherent) part objects is
shown.

11.9 Definition of Fib multimedia object

If the expression Fib multimedia object is used, the Fib object with focus on the
multimedia object it represents is meant.

63

11 DEFINITIONS FOR FIB

root

area

list

functionfunction

point

list

pointfunction

point

function

point

obj1 obj2 obj3

obj1 obj2

1

43

2 5

Figure 7: Example: Order of (coherent) part objects

64

12 THEORETICAL STATEMENTS FOR THE FIB MULTIMEDIA
DESCRIPTION LANGUAGE

11.10 Definition of correct Fib multimedia object

A correct Fib multimedia object is a Fib object, that fully reflects the original mul-
timedia object, which it should represent. So, if the multimedia object that the Fib
object represents, and the original multimedia object are compared, no difference
between them can be found.

12 Theoretical statements for the Fib multimedia descrip-
tion language

Some theoretical statements for the Fib multimedia description language will fol-
low, for wich, because of lack of time, usually not a complete proof is given. With
these statements a better understanding of the Fib multimedia language should be
provided.

12.1 Power of the Fib multimedia language on images

With the Fib multimedia language all as raster graphics displayable images can be
represented. Images, that are displayed as raster graphics, are the most commonly
used images in the digital data processing. These include Windows bitmap (BMP;
file extension: .bmp), JPEG File Interchange Format (JFIF, file extension: .jpg)
and Portable Network Graphics (PNG, File Extension: .png).

With using only the point element and the list element alone all possible raster
graphics can (already) be represented.

Proof: A raster graphic (euclidean, two dimensional, discrete) can be represented
as a matrix, the column indicats the x coordinate, the lines the y coordinate of the
point and the values specify the colors of the points. The number of dots in the
raster image is finite. To represent these points in the Fib multimedia language, a
root-element have to be created that contains the properties of the raster graphic
(size and dimension domain etc.). In this root-element a main Fib object, wich is
a list element, is inserted, which contains for each point of the image a subobject.
This subobject consists only of a property element, which encodes the color of the
point, and one contained point element, which encodes the position of the point. So
there is for every point in the raster graphic a corresponding point in the generated
Fib object, so that the Fib object represents the raster image.

A mapping into the Fib multimedia language can for example be implemented
by the algorithm shown in listing 2 (pseudo-C).

The indexing of the matrix begins with (0.0).
The color value of coordinates (x, y) can be determined with
matrix[x, y]. With the function getColorVector() a Fib color
vector is generated from the matrix color value.
The syntax of the Fib objects corresponds to the in section II on page 4 discussed
possible syntax.

65

12 THEORETICAL STATEMENTS FOR THE FIB MULTIMEDIA
DESCRIPTION LANGUAGE

Listing 2: Algorithm to generate a correct Fib object from an image matrix
1 void translate(matrix){
2

3 int xmax = number of columns of the matrix;
4 int ymax = number of lines of the matrix;
5 Fib_Object_Pointer obj = new root();
6

7 //set the properties of the raster graphic
8 obj->setPicture(xmax, ymax, colorScheme);
9

10 list mainList = new list()
11

12 obj->insertMainObject(mainList)
13

14 for(int x = 0; x == xmax; x = x + 1){
15

16 for(int y = 0; y == xmax; y = y + 1){
17 mainList->insertObject(property(getColorVector(matrix[

x,y]) , p((x,y))));
18 };
19 };
20 };

Since the expansion with functions and other elements is optional, a correct Fib
object is generated with the specified algorithm.

For each point in the matrix there is a same-colored point in the Fib object with the
corresponding coordinate, but there are no points in Fib object that are not present
in the matrix, because each coordinate of the matrix is traverse with the two “for”
loops. Thereby a point in the Fib object is added for each coordinate and thus
for every point in the raster graphic. Thus for every point in the raster graphic a
corresponding point in the Fib object exists. Since only coordinates of the matrix
are traverse in the “for” loops and only for them corresponding points are included
in the Fib object, there are only points that appear in the matrix and hence only
points in the Fib object, which also occur in the raster graphic. So there are only
the points from the original raster graphic in the Fib object and no more. Thus
the Fib object and the original the raster graphic represent (/shows) the same raster
graphic. Therefore, all raster graphics are representable with the Fib multimedia
language.

A Fib object generated by the algorithm, that represents an original raster
graphic, is an upper limit to the minimum size of possible corresponding Fib ob-
jects. This means, each raster graphic can be represented by a Fib object, that is
as big as the Fib object for the raster graphics that was generated with the above
algorithm, that is the Fib object generated. But there are likely even shorter Fib
objects for raster graphics.

With that the minimum size of a Fib object for a raster graphic is maximal:

66

12 THEORETICAL STATEMENTS FOR THE FIB MULTIMEDIA
DESCRIPTION LANGUAGE

Fib_maxmin = (number of pixels in the image) ∗[(size of a point element) + (size
of a property element for the appropriate color scheme)] + (size of a list element)+
(size of a root-element with values set)

Example: You want to shown an image of 8 x 8 = 256 pixels with 3 bytes for the
color (RGB), 1 byte for the position (for each direction x and y 4 bits = 8 possible
values) and 1 byte for the object name (for example “l” for the list elements and
“p” for the point elements). Parentheses are not needed, because all parts have a
fixed length. (The assumptions about the sizes of the Fib object elements are
estimated here. In a implementation, better (/smaller) values are more likely.)

• A point element requires 2 bytes (1 byte position + 1 byte element name).

• For a property element 4 bytes are needed (3 bytes color + 1 byte element
name).

• For a list element 9 bytes are needed (8 bytes for specifying the number of
subobjects + 1 byte element name).

• The root-element requires 256 bytes. (Since many parts of the root-element
are empty and only the domain for two dimensions and the RGB color
domain must be specified, 256 bytes should be enough.)

Calculation: 256(pixel) ∗ (2bytes+ 4bytes) + 9bytes+ 256bytes = 1801bytes

So the image can definitely be displayed with a 1801 byte long Fib object. But
there are other shorter Fib object representations possible. The 1801 bytes are
thus the upper limit for the minimum size with which the image can be
represented by a Fib object.

For comparison: The memory requirements of a raster image as a bitmap (only
point information) is at least (Number of pixels in the image) * (size of a color
value)

For the above example it results in: 256(pixel) ∗ 3bytes = 768bytes

That’s about half of the 1801 byte limit on the minimum Fib object representation.

In that the matrix is extended to three dimensions, the statement about the
representability of all raster images can be easily extended to sequences of raster
images (such as the images of movies).

67

12 THEORETICAL STATEMENTS FOR THE FIB MULTIMEDIA
DESCRIPTION LANGUAGE

12.2 Cardinality of Fib

Theorem: The set of possible Fib objects is countable infinite.

Sketch of proof for “countable”:
Every Fib object can be represented with a finite number of letters, and thus bits
or numbers, and the amount of these is countable. This follows from the fact,
that the number of Fib elements in a Fib object is always countable and every Fib
element consists of countably many parts, which are themselves countable, there
are for example only integer or rational numbers, and also the number of variables
is countable.

Sketch of proof for “infinite”:
All natural numbers can be represented by Fib objects. In the following a possible
representation of any natural number with a Fib object is described.

A point object itself is the natural number 0 . If a Fib object is inserted in a
new function element the resulting Fib object is the successor of the original Fib
object. In this manner the 0 and the successor function can be reproduced in the
Fib multimedia language, and all natural numbers can be represented. Since the set
of natural numbers is infinite, the amount of Fib objects is also infinite.

Even every multimedia object can be represented by a countable infinite set of Fib
objects, because to a Fib object, that represents a multimedia object, any Fib object
can be attached with the help of a list element, as long as the multimedia object
representation is not changed. For example, to a Fib object a copy of itself using a
list element can be as often attached as needed, without changing the multimedia
object.

12.3 Any complete Fib object can be represented as a multimedia ob-
ject

It is shown in this section, that it is always possible to interpret (to translate into a
multimedia object) any complete Fib object (see section 11.2 on page 55) in a way,
that only valid multimedia objects of a certain type (e. g. RGB images with 100 x
100 pixels) can result. In which the limitations with regard to the multimedia data,
as already mentioned, are assumed, that the multimedia data can be represented
as properties of points of a finite, euclidean and discrete (there are smallest units)
space. This restriction is not very large, because they (almost) excludes non of the
presently common multimedia data. The multimedia data may therefore represent
images, sound or movies.

With the restriction that the distance / difference between two properties of the
same type can always be determined as a numerical value, two multimedia objects
with the same dimensions can be always compared. Two multimedia objects have
the same dimensions, if for each point in the first multimedia object exactly one
corresponding point in the other multimedia object exists.

68

12 THEORETICAL STATEMENTS FOR THE FIB MULTIMEDIA
DESCRIPTION LANGUAGE

The requirement of the complete Fib object is necessary to ensure that the Fib
object can be always evaluated. Since the completeness of an Fib object can be
check with the syntax shown in part II, if a Fib object is complete can always be
determined. Incomplete Fib objects should not be generated by the algorithms or
the genetic operators.

If the dimensions of a Fib object are adapted to that of a multimedia object
(this should be always possible), the Fib object is always comparable with the
multimedia object, because it can itself be always presented as a multimedia object,
and two multimedia objects with the same dimensions can always be compared to
each other and the similarity to each other can be evaluated.

Note: This is advantageous for genetic algorithms. In some other forms of
representation that are generated by genetic algorithms, invalid objects (e. g. pro-
grams) arise, where a more accurate evaluation / comparison is not possible. A
population in this format can contain, for example, a large class of objects that are
invalid, which are all equally bad and are therefore considered same in the selec-
tion process. If the population consists only of invalid individuals, the selection of
a better individual is impossible. The genetic algorithm is then on a (fitness) plane,
from which it can only find away with great difficulty.

Proof that every correct Fib object can be represented as a multimedia object (of
a specific type, such as a picture): The starting point is that a multimedia object
(euclidean, two-dimensional, discrete) can be represented as a finite set of points
with their (finitely many) properties. Since there are only finitely many points with
only finitely many properties, such a finite set is always constructible.

Such a finite set of points with their (finitely many) properties is also generated
by a correct Fib object. Points of the set that are too much to represent a multi-
media object, will be deleted from the set. Points that are missing in the set to
represent a multimedia object are inserted into the set. Properties of the points that
are too much to represent a multimedia object will be deleted. Properties, which
are missing at points to represent a multimedia object, are added and set with their
default values (e. g. the zero values of their domains). In this way a finite set
of points is created with their (finite many) properties that can be represented as a
multimedia object.

Example: The Fib object should represent an RGB image with 100 x 100 pixels.
For this the dimensions of the Fib object are adjusted to cover these 100 x 100
pixels in horizontal and vertical direction. That is, if the dimension (horizontal or
vertical) already exists, the domain of each direction is adjusted, so that it covers
at least 100 values at regular intervals. So that to each pixel a value is assigned. If
a dimension (/ direction) is missing, it will be created with the appropriate domain
and in all points for the dimension the standard value of 0 will be set. In this case
there is no point with other values than the default value for this dimension. Di-
mensions that are too much, are deleted from the root elements and the points. The
evaluation of the resulting Fib object produces a set of points with their properties.

69

12 THEORETICAL STATEMENTS FOR THE FIB MULTIMEDIA
DESCRIPTION LANGUAGE

During evaluation, the smallest value of Wmin of each dimension in the Fib object
is assigned to the value 0 as the coordinate in the set, the second smallest one to 1
as the coordinate, etc.

From this set now all points are deleted that are not within the 100 x 100 pixels
boundary (points for which a coordinate respectively value is less than 0 or greater
than 99). For all coordinates, which are still missing (missing points, where the
values respectively the coordinates is between [including] 0 and 99), points are
inserted. All properties that are not RGB colors will be deleted. To all points that
have no property for RGB colors, the default color (0, 0, 0)colorRGB is assigned.
The resulting set contains for each point in the RGB image with 100 x 100 pixels
a point with RGB color, but no other points or properties, and thus represents an
RGB image with 100 x 100 pixels.

This can then be compared with other RGB images with 100 x 100 pixels and
rated in relation to them.

70

Part III

The genetic algorithm
In this section, general design decisions and initial analysis for the genetic algo-
rithm are established. The realized genetic algorithm is flexible and expandable
designed.

The genetic algorithm is also an evolutionary algorithm. The term “genetic”
refers to the ability of the algorithm to encode information of two or more indi-
viduals in a new individual and that it is working on information that code the
(multimedia) object and do not represent those objects directly.

The algorithm is used to generate Fib objects, which represent a multimedia
object as well as possible. The algorithm is given a particular multimedia object,
for that it generates Fib objects /individuals, of which good will be selected. The
creation of new individuals may also include analysis of the multimedia object and
the use or analysis of information from other individuals. Which individuals are
good, can be decided by the given parameters (by the evaluator for individuals).

The algorithm consists of five separate parts:

• the core algorithm

• the evaluator for individuals

• the mortality rating algorithm

• the evaluator for operators

• the set of operators

In Figure 8 a sketch for the flow diagram for the genetic algorithm is shown.
In the following the single Fib objects are called individuals. The set of all

individuals, who are existing at a time in the algorithm, is calle population.

13 Core algorithm

The core algorithm uses the evaluator and the operators to realize the genetic algo-
rithm. It is simple and flexible.

The evaluators for individuals or operators are (with the help of parameters)
interchangeably.

The core algorithm includes the main loop of the genetic algorithm, which calls
the operators and generates the individuals.

The second loop in the algorithm is the selection loop. It will delete individuals.

In addition, the core algorithm provides functions for the operators. The op-
erators are called by the core algorithm through a method, that is the same for all

71

13 CORE ALGORITHM

The genetic algorithm

create individual delete individual
start

delete poor individual

if to
much
individuals

if
enough
resources are
available

end

if end condition
true

choose operation

start operation

assess operation

if operation done

operation runs

Fib-individual

algorithm information
new Fib-individuals

Figure 8: Flow diagram of the genetic algorithm

72

14 EVALUATOR FOR INDIVIDUALS

operators. After that, the operators can get, with the help of the functions of the
core algorithm, the algorithm specific values, e. g. such as individuals, which the
operations will use. In this way, the operators will always look the same in each
case for the core algorithm, and the core algorithm does not need any logic specific
to a particular operator. Thereby future adjustments to the operators are simpli-
fied, because not the interface of all operators have to be be adjusted, but only the
functions, which are provided by the core algorithm.

The calling method for the operators should be flexible, so that operators can
be started concurrently and the algorithm don’t have to wait for the completion of
each operation. The operators should be run separately from the core algorithm
and affect it only by the specified interface. A faulty operator should not lead to
errors in or termination of the entire system.

14 Evaluator for individuals

The concrete evaluator algorithm should be simple to replace, so it can be adapted
to various problems. The respective evaluation algorithm is needed to calculate the
fitness of an individual.

With the help of parameters for special evaluators, they can be further adjusted
(for example it can be adjusted, how important a small size compared to a fast
evaluation of individuals is).

14.1 The fitness of individuals

The fitness of an individuals is determined by different fitness factors.
One of the most important is, to what extent the individual is similar to the

desired original multimedia data (such as the original image). The more the indi-
vidual (or the phenotype of it) is similar to the original multimedia data, the higher
the fitness should be and the lower is the error, which the individual has for the
display of the original multimedia data.

This error (and thus the fitness of the individual) can be determine for example,
with the sum of (the squared) differences (not defined points give the maximum
error) of the colors of the points between the original image and the image produced
by the individual, or through another self-determined distance.

If the fitness of separate part objects of the individual should be determined,
this can be achieved, for example, by including in the evaluation only the area that
is covered by the part object, the covered area and a border around this area or only
the smallest square, which encompass this part object.

Another useful fitness factor is the size (increases with the number of elements)
of the separate individuals, to give bigger individuals a lower fitness than smaller
individuals, with the same error on the original multimedia data, and to prefer the
smaller individuals.

A further fitness factor, which can be included, is the estimate of the time it
takes to evaluate the individual for displaying the multimedia object (phenotype).

73

15 EVALUATOR FOR OPERATORS

In this way maybe even the execution speed of the algorithm can be increased.

14.2 Selection by deletion of individuals

In order to spare the resources (memory, CPU time), it is necessary to limit the
number of individuals (Fib objects) in the working process (individuals wich par-
ticipate in the genetic algorithm). Therefore (if required) individuals have to be
removed from it. In this process individuals with lower fitness are preferred.

There is therefore a mortality rating algorithm for the algorithm. It deter-
mines the probability, with which a individual is deleted. To delete individuals,
there is a separate loop in the algorithm, in which is tested, whether the maximum
number of individuals is exceeded. If this is the case, individuals will be deleted,
until the number of individuals is back on track (lower the maximum number of
individuals). In this case individuals with a high mortality assessment by the mor-
tality rating algorithm have a high probability of being deleted.

The mortality assessment is based on the assessment of the fitness of individu-
als. However, the mortality rating algorithm can be exchanged for other mortality
algorithm or be controlled by parameters. For example, it is possible to declare
some individuals to be immortal, so they can not be deleted. By declaring, for ex-
ample, the n (n > 0) best individuals to be immortal, it can be avoided, that they
will be deleted and thus that one of the best individuals will be lost.

The mortality algorithm can furthermore access via the operator interface the
status information of the genetic algorithm, to determine, for example, the number
of previously generated individuals.

15 Evaluator for operators

To determine which operator to selected next, they are evaluated. Operators, which
are rated better in a situation, have a higher probability of being selected respec-
tively run in a similar situation.

The situation may include:

• how many operations wher executed.

• of which nature the original multimedia object is (with the help of the do-
mains for the environment in the root-elements of it):

– it contains colors

– it is monochrome

– it contains sound

– it is a film

– ...

74

16 THE GENETIC OPERATORS FOR FIB

• the average (relative) fitness of individuals.

• the fitness of the best/worst individual.

• the standard deviation of fitness values in the population.

• the number of individuals.

• the operations that have been executed.

• ...

The different evaluation algorithms can be selected. Thus, different evaluation
algorithms can be easily interchanged and compared.

To evaluate the operators, data of their previous execution may be kept per-
manently (by the seperate evaluators). In this way, the algorithm can learn from
previous operator calls.

The evaluation of the operators should be system independent, ie. independent
of the computer, on which the algorithm is running.

The evaluation criteria can be:

• execution time of the operation

• reached deterioration or improvement

• reliability of the operator (Is always a result returned? Did it crashes some-
times?)

• ...

16 The genetic operators for Fib

The operators are to be seen separately from the genetic algorithm. It should be
possible to add any number of operators for the use in the genetic algorithm, with-
out having to adjust it.

Each operator has a unique identifier or ID, through which related values (such
as its performance to date) can be associated to it.

An running operator is called operation.
The operations are intended to implement coding algorithms. Operators should

therefore not be as simple as possible, but may as well involve complex algorithms.
The operators should also be numerous, and the algorithm is responsible for

the selection of good operators. Therefore, it is also desirable to create own oper-
ators with good parts of other operators. In this case, both the original operators
and the new operator, which contains the extracted parts, should be in the genetic
algorithm.

75

17 THE SOCIAL ASPECT OF THE GENETIC ALGORITHM

For special applications, a genetic algorithm may be used, which set of op-
erators was restricted to the most useful operators for this application. Also, for
a application useful operators can be combined to a (not genetic) algorithm, that
uses them in determinated way.

16.1 Reproduction

In the general “reproduction”, a individual is choosen from the population, prefer-
ably a individual with an high fitness, than it is copied and modified by one opera-
tion. At the end it is added to the population. It can also be checked, if it is a “new”
object (if there is no equal object in the population) and just added in this case, so
there are no duplicate individuals in the population.

In the algorithm the reproduction is implemented by running an operator. This
operation retrieves all the required data with the help of the operation interface
of the algorithm. This required data may include one or more individuals or data
on the recent course of the algorithm (e. g. the number of previous interactions
respectively operations).

17 The social aspect of the genetic algorithm

The strict separation of the operators from the algorithm and the ability to easily
add operators, has its roots in rather social considerations.

Normal coding algorithms are limited to the encoding methods of one or a few
ideas of some (in the order of 1 to 100) people (the development team). But there
are world wide much more people (on the order of probably 100000) who deal in
a broader sense with efficiently and easy encoding of multimedia objects, thereby
inevitably many ideas to code multimedia objects remain ignored. Even if some
of these people have an interested in contribute their ideas, this is very difficult or
impossible to realize.

Everyone can contribute new ideas to the Fib algorithm in the form of new op-
erators (a term for this is “crowdsourcing”). To do this, it is sufficient to only pos-
sess the knowledge for the Fib multimedia description language and the interface
for the operators of the algorithm. In order to introduce new ideas or operators, for
efficiently coding of multimedia objects, no adjustments to the algorithm or other
operators should be required. This will limit side effects and any implementation
of an idea has only to worry about the idea respectively its operator. So there are
no further knowledge needed of the algorithm or even other operators. In this way
the system can grow, without increasing the complexity of the (base) system and
with this the difficulty for maintenance and expansion of the system.

The algorithm and the image description language should be designed so that
layman can train themself without much effort to implement new ideas respectively
operators. In particular for students in computer science (or people with computer
science as their hobby), it should be possible to train themself within a few days,

76

18 WHY GENETIC ALGORITHMS ARE GOOD FOR ENCODING
MULTIMEDIA OBJECTS

so that they can implement their own operators and integrate them. (How useful or
effective this is, should be of no concern here.)

The GNU GPL license, under which the algorithm is published, clarifies the
legal situation for new operators. This allows to add new operators to the algorithm,
unless other rights are infringed (an injury would be, for example, that the operators
use an algorithm or code which are under incompatible licenses). New operators
can also be made available to the public.

The rating of the operators should motivate people to integrate their own op-
erators. Thus, anyone who has added an operator can realisticly assess, how good
his operator is in relation to other operators in a situation. Competition among
operator authors should be beneficial to the creation of new and better operators.

All this should result in that not only a small development team will contribut
to improve the encoding of Fib objects, but that a much larger group of people are
concerned with this issue. This should give the development and propagation of
Fib a further boost.

In this sense, the genetic algorithm for Fib is a trans ingenious algorithm, that is
designed to extract the ideas of people to encode multimedia data from their heads
and then transport/collected them into one pool. Thus, these ideas/algorithms can
accomplish more than they could individually. The algorithm can thus combine
more intelligence than one human (or a small group) can produce.

18 Why genetic algorithms are good for encoding multi-
media objects

There is, in general, no algorithm for converting raster graphics directly into memory-
friendly vector images, where the strengths of the vector description language are
actually used. For the conversion from one multimedia format into another, there is
often a similar problem, especially when in the first multimedia format, the prop-
erties of points of a euclidean (discrete) space are given directly (for example, to
be able to store images directly) and the second multimedia format encodes the
multimedia objects with complex objects (such as rectangles and / or circles).

Since a genetic algorithm has the potential to generate all possible descriptions
in a multimedia language and among these, of course, also good descriptions will
be, that use the strengths of multimedia language in respect of the original object,
a genetic algorithm has also the potential to generate good descriptions. If existing
knowledge was well implemented into genetic algorithm, it can find good descrip-
tions probably faster than a pure random search.

Yet another advantage of genetic algorithms is the great freedom in the choice
of problem description (multimedia language) and the possible operators on it.
This allows complete freedom to design a multimedia language according to your
own ideas, wich has certain properties, such as readability or simplicity. Into the
operators arbitrarily much knowledge can be incorporated. It is, for example, pos-
sible to use known good algorithms (e. g. to translate raster images into vector

77

19 COMPLEXITY ESTIMATION

images) or parts of them in operators, so that the result from the genetic algorithm
(on raster images) is at least as good as the algorithm, but even better results can
be generate.

The major disadvantage of genetic algorithms that they need very much time or
computing time is weakened by the fact, that this high initial cost can be “cheap”
and pays off later. The genetic algorithm can run, for example, as a background
process with low priority, so that it consumes superfluous processing power. Later,
with the result that it has supplied, much bandwidth can be saved.

This all suggests to use genetic algorithms to encoding multimedia objects.

19 Complexity estimation

With the approach of section 12.1 on page 65, it is possible to converted an arbi-
trary raster image into an Fib object, with a computing time growing linearly to
the number of points and ther properties, as each point and its properties can be
easiely added to a list element and the required time for the creation of the other
Fib elements (of the root-element) can be performed in constant time.

This approach can be extended to any multimedia data, which are represented
as properties of points of a finite, euclidean and discrete space. Thus always an
operator can be constructed, that converts a multimedia object in linear time with
the number of points and properties into a corresponding Fib object. This Fib
object grows only linearly in size with the number of points and ther properties of
the original multimedia object. This operator, however, doesn’t produced good Fib
object representations, because it does not use the possibilities of Fib.

How much effort is required to produce better Fib objects, is very difficult
to estimate, since both the operators and the multimedia objects can be arbitrary.
However, it can be assumed that, for multimedia objects with simpler structures
the effort is lower.

20 Analogy to the natural evolution

As an analogy to the natural evolution strains of bacteria (e. g. E. coli) are used
here. They have genes, on wich basis genetic evolution occurs in them.

In these bacterial strains (e. g. E. coli) gene transfer is possible, whereby
some of the genetic information (genetic material or its copies) of one bacterium is
transfered to another. There are also mutation processes.

A Fib object can be seen as information, which encodes a multimedia object,
as bacterial genes encoding a bacterium (structure and behavior).

In this the single Fib elements shouldn’t be seen as the bases of the genes,
but as the functionality of genes or set of genes. As with bacteria only with the
combination of genes or of the things that they encode (e. g. enzymes) more
complex functions are being put into effect (e. g. conversion of sugar into kinetic

78

20 ANALOGY TO THE NATURAL EVOLUTION

energy), in Fib objects only by combining of the elements (partial) multimedia
objects (e. g. [partial] images) are created.

Fib part objects can also be transmitted, as in gene transfer among bacteria, into
other Fib objects and are subject to mutation, wher it is even with the bacteria diffi-
cult to say, whether the mutation of genes is really completely random or whether,
in the course of millions of years, no mechanisms have emerged, leading to a more
“intelligent” mutation, and wherein the random element consists. Individual Fib
objects may be viewed not only as individual bacteria, but also as all bacteria with
identical genetic information.

The original multimedia object represents the niche, to which the Fib objects
(bacteria) should adapt to. They can do this in many different ways, and the adjust-
ment need not be perfect.

However, in the genetic algorithm for Fib objects, operators are sought, which
will make directed improvements. Such a mechanism is explicitly directed, which
is not to be expected of bacteria evolution.

A good book on evolution in general is “The Plausibility of Life: Resolving
Darwin’s Dilemma” (“Die Lösung von Darwins Dilemma” [12]).

79

Part IV

Fib storage format
In this section, the Fib storage formats are presented, in which complete Fib objects
can be stored. There are two Fib storage formats: a format for compressed storing
(see section 21 on page 80) and a format to represent a Fib object as a readable
XML structure (see section 22 on page 114).

21 Compressed storing of Fib objects

Since a space-saving representation is one of the main objectives of the Fib multi-
media description language, the Fib elements can be stored with few bits respec-
tively bytes. For this a compressed storage format is defined here. Ther will be no
standard compression algorithm used, since it would take no account of the specific
characteristics of the Fib multimedia description language.

The representation of integers is in two’s complement system. For natural
numbers (including the 0) the binary numeral system is used. The number of bits
for vector elements or variables are determined by the corresponding domain (e.g.
for numbers for the horizontal dimension or a grayscale value) or fixed specified
(for example, numbers for the byte offset in the root-elements).

Real numbers are stored as floating point numbers. The number of bits for the
exponent and mantissa are given by the respective domain definition.

The numbers are stored in little endian format.
All texts are encoded in Unicode.
Unfortunately, in the following description the notation of the bits isn’t easy

to implement. In the normal form (or spelling) numbers are written from right to
left, but text is written from left to right. This means that short bit sequences, as
they appear in a byte, are written rather how numbers are written from right to left.
However, if the bit sequences gets longer or when the bits are considered in a file
or data stream, writing them as in the spelling of text from left to right is more
appropriate. Otherwise, if the number notation would be used, at the end of a long
line of bits the first bit from the file would stand.

Therefore, in the following the bits of individual elements such as numbers are
written from right to left, as they are usually short bit sequences. Individual ele-
ments are usually also displayed and processed on the computer in the hexadecimal
system, which works, as well as numbers, from right to left. The reverse writing
would make it difficult to work with compressed elements. The bits of individual
bytes are for clarity mostly separated with a semicolon (’;’).

If, however, a series (or stream) of several elements in a data stream is dis-
played, the bits are arranged like in text from left to right. This unfortunately leads
to the fact, that the bits of each element are presented in reverse order.

80

21 COMPRESSED STORING OF FIB OBJECTS

21.1 File Header

Every compressed Fib data stream begins with the three letters “fib”. The file
extension for compressed Fib files should “.fib”.

21.2 Root-element

For the description of the root-element see section 9.14 on page 33 .
The Fib root-element does not need a separate introduction. The data of the

top most root-element starts with the third byte (the counting starts from 0) imme-
diately after the stream initiation of “fib”. Other root-elements follow after their
identifiers.

For the root-element the following fields are written sequentially (where each ele-
ment is filled in each case if needed to a full byte with 0):

1. 16-bit field to specify the optional information fields (see section 21.2.1)

2. 64-bit field to specify additional optional information fields (see section
21.2.1); only present if the bit 16 of the optional information field is set

3. a 144 (= 16+64+64)-bit field for the checksum (see section 21.2.2 on page
85); only present if bit 1 of the optional information fields is set

4. number of the byte of the root-object (offset), from which the domains (Domains
and DomainsV alues) are defined; only present if the bit 3 of the optional
information field is set

5. number of the byte of the root-object (offset), from which the input variables
are defined; only present if bit 4 of the optional information field is set

6. number of the byte of the root-object (offset), at which the main-Fib-object
begins

7. number of the byte of the root-object (offset), from which the sub-root-
objects are defined; only present if bit 6 of the optional information field
is set

8. number of the byte of the root-object (offset), from which the database iden-
tifiers are listed; only present if bit 7 of the optional information field is set

9. number of the byte of the root-object (offset), at which optional part begins;
only present if bit 8 of the optional information field is set

10. number of the byte of the root-object (offset), at which root-object ends,
respectively the number of byts the root-object is long

11. the multimedia information (see section 21.2.3 on page 85), only present if
bit 2 of the optional information field is set

81

21 COMPRESSED STORING OF FIB OBJECTS

12. the domains (see section 21.2.4 on page 87); only present if bit 3 of the
optional information field is set

13. input variables (see section 21.2.5 on page 100); only present if bit 4 of the
optional information field is set

14. main-Fib-object (see section 21.2.6 on page 100)

15. sub-root-objects (see section 21.2.7 on page 100); only present if bit 6 of the
optional information field is set

16. database identifiers of used database objects (see section 21.2.8 on page
101); only present if bit 7 of the optional information field is set

17. the optional part compressed with the Deflate-algorithm for the lossless data
compression (see section 21.2.9 on page 101); only present if bit 8 of the
optional information field is set

If a single bit is not set in the optional information fields for a field, this field is
omitted.

For fields with the “number of the byte of the root-object, at which ...” 8 bytes
or 64 bits are used each. The number in the field is in the domain of the natural
numbers. Given in each case is the number of the byte, from the beginning of the
root-element, at which the corresponding element beginns (i.e. for the first byte
of the element). The count of bytes in the root-element starts at 0 . The optional
information field thus has the offset 0 .

All texts that are not contained in the optional part, are moved into the optional
part (see section 21.2.9 on page 101).

21.2.1 Optional information fields

At this point a 16-bit fild stands, whose bits indicate the presence of optional infor-
mation fields in the root-element.

The individual bits (counting starts with 1) switch the following information fields:

1 checksum (see section 21.2.2 on page 85)

2 multimedia information (see section 21.2.3 on page 85)

3 domains (see section 21.2.4 on page 87)

4 input variables (see section 21.2.5 on page 100)

6 the sub-root-objects (see section 21.2.7 on page 100)

7 identifiers of used database objects (see section 21.2.8 on page 101)

8 optional part (see section 21.2.9 on page 101)

82

21 COMPRESSED STORING OF FIB OBJECTS

• bits 9 till 15 have not been established and are available for future use

16 additional optional fields, indicated by a following 64-bit field for additional
optional information fields

The following section describes the individual bits, when they are used and
their impact.

1. checksum bit

If set: An checksum field in the root-element exists.

Effect if set: A checksum field (see section 21.2.2 on page 85) exists.

If not set: Ther is no checksum field in the root-element.

Effect if not set: A checksum field dosn’t exists.

2. multimedia information bit

Is set if: For the current root-element multimedia information exist, which may dif-
fer from the inherited multimedia information. The multimedia information from
a root-element will be inherited by a contained root-element, when the contained
root-element does not define itself (any) different multimedia information.

Effect if set: The current root-element specifies own multimedia information (see
section 21.2.3 on page 85).

If not set: The multimedia information are the same as the inherited multimedia
information.

In the top most root-element (respectively a root-element that exists in no other
root-element), the bit must always be set, and thus the multimedia information have
to be present.

Effect if not set: There are no multimedia information given in the current root-
element. The valid multimedia information for the root-element are inherited from
the root-element in which it is contained.

3. domains bit

Is set if: For the current root-element domains exists.

Effect if set: For the current root-element domains are given (see section 21.2.4
on page 87) and the offset, at which byte they start in the root-element.

If not set: For the current root-element no domains exists.

83

21 COMPRESSED STORING OF FIB OBJECTS

Effect if not set: No offset is given for the domains in the current root-element and
no domains are given.

4. input variables

Is set if: For the current root-element input variables exists.

Effect if set: For the current root-element input variables are given (see section
21.2.5 on page 100) and the offset, at which byte they start in the root-element.

If not set: For the current root-element no input variables exists.

Effect if not set: No offset is given for the input variables in the current root-
element and no input variables are given in the current root-element.

6. sub-root-objects

Is set if: For the current root-element sub-root-objects exists.

Effect if set: For the current root-element sub-root-objects are given (see section
21.2.7 on page 100) and the offset, at which byte they start in the root-element.

If not set: For the current root-element no sub-root-objects exists.

Effect if not set: No offset is given for the sub-root-objects in the current root-
element and no sub-root-objects are given in the current root-element.

7. identifiers of used database objects

Is set if: For the current root-element identifiers of used database objects are listed.

Effect if set: For the current root-element identifiers of used database objects are
listed (see section 21.2.8 on page 101) and the offset, at which byte they start in
the root-element.

If not set: For the current root-element no identifiers of used database objects are
listed.

Effect if not set: No offset is given for the identifiers of used database objects in
the current root-element and no identifiers of used database objects are given in the
current root-element.

84

21 COMPRESSED STORING OF FIB OBJECTS

8. optional part

Is set if: For the current root-element an optional part exists.

Effect if set: For the current root-element an optional part exists (see section 21.2.9
on page 101) and the offset, at which byte it starts in the root-element.

If not set: For the current root-element no optional part exists (maybe because it
was not stored to save space).

Effect if not set: No offset is given for the optional part in the current root-element
and no optional part is given in the current root-element.

16. more optional fields

Is set if: 64 more optional information bits are present.

Effect if set: After the 16-bit field, to determine the existing optional information,
follows one additional 64-bit field for the determination more optional information.
These bits are for future uses and are currently not used.

If not set: The 64 more optional information bits are not present.

Effect if not set: After the 16-bit field no more bits follow for additional optional
information.

21.2.2 Checksum field

With this field a checksum can be provided for the root-element.
The procedure is identical to the procedure of the checksum property from

section 21.3.3 on page 104.
At this position there are 3 parameters, which are one 16-bit and two 64 bit

integers. The first parameter A is the type of checksum. The second parameter B
is any number of bits, a checksum should be generated and the third parameter C,
how many bits the checksum should have. The information applies to the area after
the three parameters (even in sub-root-elements). The checksum is implemented
as described in section 21.3.3 on page 104.

21.2.3 Multimedia information

In Table 9 the structure of the multimedia information section of a root-element is
described. The size of the multimedia information section is 2 ∗ 64 = 128 bits or
16 bytes.

85

21 COMPRESSED STORING OF FIB OBJECTS

element num-
ber

bits typ description

Fib version 1 64 natural
number

The version number of the Fib multimedia de-
scription language, which is required to load
the Fib object. This number increases with
each new version of the Fib multimedia de-
scription language by one. It can be mapped
to a human-readable form (e.g. “Fib V1.2.3”).
Here, however, only a number is used, other-
wise a particular form would be used, which
can be changed only with difficulty after-
wards. A human-readable form of the version
may be specified in the optional part.

DB-version 1 64 natural
number

The version number of the Fib database,
which is required to load the Fib object. This
number increases with each new version of
the Fib database by one. It can be mapped
to a human-readable form (e.g. “Fib DB
V1.2.3”). Here, however, only a number is
used, otherwise a particular form would be
used, which can be changed only with diffi-
culty afterwards. A human-readable form of
the version may be specified in the optional
part.

Table 9: Data of the multimedia information

86

21 COMPRESSED STORING OF FIB OBJECTS

21.2.4 Domains

The domain section consists of two lists with entries of different length. The
lengths of entries are determined by ther content.

The domain section starts with a 64 bit integer that pecifies the number of
entries for the domain list. After which follows the domain list.

This list in turn is followed by a 64 bit integer that specifies the number of
elements in the value domains list (the domains for values), and then the list with
the value domains.

In this, one or both lists can be empty. For an empty lists only the introductory
64-bit number will be stored, which is in that case 0 .

The domain list identifies the domains of the individual elements. If a value
(e.g. a variable) is outside the domain, it is rounded to a value within the domain.
Values outside these domains can thus not occur for the element.

The domains for values contain also domains, but these domains only apply to
actual values in elements and not for values of contained variables. The domains
for values will determine how many bits are needed to store an element that con-
tains a value. The domains for values are useful when the values of an element do
not cover the full possible range of the domain for the element. For example, if a
subobject contains only points whose position vectors only contain variables and
integer values between 0 and 10, the domain for values for position vectors can be
set to “integerB” with 4 bits, even if the variables of position vectors taking values
greater 100 .

If while saving a value is found in main-Fib-object that lies outside of the actual
domain of the element, the domain is automatically expanded so that it includes
the value. If the domain was inherited, in the root-element a corresponding new
domain is created, which includes the value and the inherited domain.

The domains for values may be generated and optimized when storing the Fib
object, to keep the space for the Fib object as small as possible. A domain for
values is generated when saving, if it is likely that through its generation space will
be saved.

Because many domains can belong to a Fib multimedia object, for them more
attention is paid to their storage space. To make future upgrades easy, the emphasis
is on flexibility.

The reason for the introduction of central (in the root-elements) domains is, that
on the one hand as little space as possible for values should be used when saving
the Fib object, without drastically limit the assignment possibilities for the values
and on other hand that it can be determined in advance if and how the multimedia
object can be displayed (e.g. if and how it should be scaled or whether the display
of all values is impossible). If for example, the domain for the dimension takes
only integer values between 0 and 50 (e.g. the horizontal in an image), then 6 bits
is enough to store the values for the dimension. For larger images simply more bits
for the values of the dimension can be used.

87

21 COMPRESSED STORING OF FIB OBJECTS

Each entry consists of two parts:

1. The name / type of the element for which the domain is (see section 21.2.4).

2. The specification of the domain for the element (see section 21.2.4).

Element names The element name / type can only consist of the specification of
a fixed element or a fixed element and a parameter.

The first bit (counting begins at 1) of the fixed element determines its length:

• If it is 0, the name is 8 bits long. Possible values are listed in table 10 .

• If it is 1, the name is 64 bits long. This is currently only planned for a future
use.

The second and third bits determine the length of the parameter:

00 ther is no parameter

01 parameter with a total length of 8 bits follows

10 parameter with a total length of 64 bits follows

11 After the element name field follows an 16 bit natural number, wich specifies
the parameter length in bytes. The 16 bits for the length of the parameters
are not included in the evaluation for the parameter length.

88

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
4 till 8

description

dim 0000 1 The domain is for position vectors (see section 9.2 on
page 6 and section 21.3.2 on page 103) respectively di-
mensions. The length of the parameter list is variable.
The second and third bit is thus 11 and after bit 8 fol-
lows a 16 bit natural number L, which specifies the
length in bytes of the parameter list. The first param-
eter following is a 16 bit natural number and specifies
the number of dimension Dim. Then Dim more pa-
rameters Dimmap1 till DimmapDim follow up, they
are a natural numbers with each of them of the length
LDimmap = ⌊((L − 2) ∗ 8)/Dim⌋ (per parameter the
still remaining bits of the parameter L divided by the
number of dimensions and the result is rounded to an
integer). The values that can be taken by the Dimmapi
parameters are described in table 7 on page 46. The
length of the parameter list L is to be determined in
such a way, that it is just enough room for all parame-
ters.

subfunction 0001 0 domain for the elements of subfunctions (see section
9.7 on page 17 and section 21.3.7 on page 107)

property 0010 0 This is the domain of a property element with the given
name (see section 9.3 on page 7 and section 21.3.3 on
page 104). The value for the name respectively the
property type is passed in the parameter. Possible val-
ues are listed in table 2 on page 12. The value that is
specified as a parameter, is a natural number. The pa-
rameter is only so long (e.g. 8 bits), as for the represen-
tation of the value as a natural number from table 2 is
required.

inVar 0010 1 This is the domain for the i’th input variable (see sec-
tion 9.14 on page 33 and section 21.2.5 on page 100).
The following parameter is an integer and specifies the
number i of the input variable. (The count of the input
variables of a root-element starts with 1.)

Names for elements of domains, which are created (if needed)
when storing a Fib object

89

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
4 till 8

description

area 0001 1 This type is for domains for the area element (see sec-
tion 9.6 on page 16 and section 21.3.6 on page 107).
The corresponding domain is a vector domain with 2
elements / subdomains. The first element or the first
subdomain is used for the number (n) of subareas / vec-
tors, it is part of the domain of the natural numbers. The
second element is the domain for the subareas (B1), it
is a vector domain with two elements or subdomains,
each of which come from the domain of integers.

variable 1000 1 Values that are needed to encode variables. The domain
should include the natural numbers from 0 to maximum
number of variables defined in the Fib leafs in the main-
Fib object. The Fib tree-leaf in the main-Fib-object
above which the most variables are defined respectively
the branch with the most defined variables, thus deter-
mins the domain. This entry is created when saving.

comments 1001 0 Values that are needed to encode comments (see section
9.5 on page 14, section 21.2.9 on page 101 and section
21.3.5 on page 106). The domain should include the
natural numbers from 0 to the number of comments in
the main-Fib-object. This entry is created when saving.

externObject 1100 0 This is the domain type for external objects (see sec-
tion 9.9 on page 25 and section 21.3.9 on page 111)
in the main-Fib-object. The domain is a vector with 4
elements. The vector elements are in ther the order for
the identifier, the number of input values, the number of
subobjects and the number of output variables. All vec-
tor element domains, except for the identifier, are part
of the natural numbers. The vector element domain for
the identifier is part of the integers. This domain is usu-
ally created when saving.

externObject-
Input

1110 0 This domain is for the input values for external objects
(see section 9.9 on page 25 and section 21.3.9 on page
111) . The domain is an vector domain and is usually
created when saving. The following parameter is an in-
teger and determines the identifier of the external ob-
ject, for which elements the domain is.

90

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
4 till 8

description

externSubobject 1100 1 This domain type is for the input values for external
subobjects (see section 9.10 on page 26 and section
21.3.10 on page 112). The domain is an vector domain
and is usually created when saving. The following pa-
rameter is a natural number and determines the number
of the external subobject, for which elements the do-
main is.

setElement 1101 0 This type is for the domain for the set-element (see sec-
tion 9.12 on page 30 and section 21.3.12 on page 113).
The corresponding domain is a vector domain with 3
elements / subdomains. The first element or the first
subdomain is used for the number (n) of variables and
number of values to be set per set, it is part of the do-
main of the natural numbers. The second element or the
second subdomain is used for the number (k) of the sets
of values to be set. It is also part of the domain of the
natural numbers. The third and final element is the do-
main for the vectors for the values to be set (Wi.g) and
is a domain for vectors, which element- or subdomains
are domains for numbers (scalar). Further as param-
eter a natural number can be specified for the domain
number DomainNr. If the parameter is missing, the
domain number DomainNr is 0 .

91

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
4 till 8

description

matrixElement 1101 1 This type is for the domain for the matrix element (see
section 9.13 on page 31 and section 21.3.13 on page
113). The corresponding domain is a vector domain
with 4 elements / subdomains. The first element or the
first subdomain is used for the number (d) of dimension
variables, the number i of value variables and number
of values i to be set per set, it is part of the domain of
the natural numbers. The second element or the sec-
ond subdomain is used for the number (k) of the sets
of values to be set. It is also part of the domain of the
natural numbers. The third element is the domain for
the areas respectively for the start and end values for
the different dimension variables, it is a vector domain
with two elements or subdomains, each of which come
from the domain of integers. The fourth and final ele-
ment is the domain for the vectors for the values to be
set (Wa.b) and is a domain for vectors, which element-
or subdomains are domains for numbers (scalar). Fur-
ther as parameter a natural number can be specified for
the domain number DomainNr. If the parameter is
missing, the domain number DomainNr is 0 .

Table 10: Names of fixed 8-bit elements for domains

Domains The domain consists of a basic domain and maybe parameters, for fur-
ther specification of the domain.

that specify the basic domain further.

The first bit (counting starts with 1) of the basic domain determines the length of
the field:

• If it is 0, the basic domain field is 8 bits long. Possible 8-bit basic domains
are shown in table 11.

• If it is 1, the basic domain field is 64 bits long. This is currently only planned
for a future use.

The second bit indicates whether the domain is scaled:

• If it is 0, the domain is not scaled.

92

21 COMPRESSED STORING OF FIB OBJECTS

• If it is 1, the domain is scaled.

If the domain is scaled, a scaling factor S is specified. This factor S is a float,
the unscaled values of the domain will be multiplied with it to obtain (the values
of) the scaled domain.

The scaling part is specified after the domain information (including parame-
ters). It consists of three fields: the length field, the mantissa field and the exponent
field. The first field (the length field) is 8 bits long, it is a natural number and speci-
fies the number of bytes for both the mantissa and the exponent field. The mantissa
field (second field) SM and the exponent field (third field) SE are each integers.
The scaling factor S is then S = SM ∗ 2SE .
Example: The domain is 2 bit natural numbers with the scaling factor of F =
1 ∗ 2−1 = 1/2 (the mantissa is 1 and the exponent is −1, the length field is 1, for
one byte scaling factor field). The bits of the scaling factor are thus: 0000 0001;
0000 0001; 1111 1111. Possible values for the elements for the domain are: {
0 ∗ 1/2 = 0; 1 ∗ 1/2 = 0.5; 2 ∗ 1/2 = 1; 3 ∗ 1/2 = 1.5 }. If in the element to the
domain a number is set that would mean 1 unscaled, it means with the scaling 0.5.
The bits of the entire domain are: 0; 1; 000000; 00000010; 00000001; 00000001;
11111111 (Fields in this order: 8-bit basic domain; scaled; natNumberB, with 2
bits per element; scaling factor: 1 byte per field, SM = 1, SE = −1) (in the file,
first bit at the front: 01000000 01000000 10000000 10000000 11111111)

The individual domains (including scaling factor) are padded with 0 to full
Byts. So if a domain is 13 bits long, the remaining 3 bits are filled with 0, so that
the domain field is 16 bit (=2 byte) long.

name value bit
3 till 8

description parameter

naturalNumberB 0000 00 The basic
domain are
the natural
numbers.

The following 8-bit parameter is a nat-
ural number X , which represents the
number of bits for values of the do-
main. The corresponding basic domain
is then 0 . . . (2X − 1).

integerB 0100 00 The basic do-
main are the in-
teger numbers.

The following 8-bit parameter is a nat-
ural number X , which represents the
number of bits for values of the do-
main. The corresponding basic domain
is then −(2X−1) . . . (2X−1 − 1).

93

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

naturalNumber 0000 01 The basic
domain are
the natural
numbers.

The following 64-bit parameter is a
natural number X , which is the largest
natural number in the domain. The
corresponding basic domain is then
0 . . . X . The bits that are needed
for each value of the domain are
⌈log2(X + 1)⌉.

integer 0100 01 The basic do-
main are the in-
teger numbers.

The following two 64-bit parameters
are two integers X and Y . The first
parameter X is the smallest number
in the domain. The second parame-
ter Y is the biggest number in the do-
main. The corresponding basic do-
main is then Y . . .X . The bits that are
needed for each value of the domain
are ⌈log2(Y − X + 1)⌉. When inter-
preting the bits, all values W (W is
the value of the bits as a natural num-
ber), which are greater than X , will be
implemented as negative values with a
value of W − (X − Y + 1). If the
smallest number X is greater than 0 or
largest number Y is less than 0, small-
est number X is subtracted from all
numbers to save them (W +X).

integerValues 0100 10 The basic do-
main are the in-
teger numbers

The first 64-bit parameter is a natural
number N , which indicates the number
of possible values. Following after it is
a second 8-bit parameter B, wich deter-
mines the number of bits per following
value. After the first two parameters
N integers follow, each with B bits in
two’s complement. This N integers are
all values which are contained in the
basic domain. In the implementation
the value W in an element for the do-
main is mapped to / interpreted as the
W ’th number in the list (the number-
ing starts at 0). The bits that are needed
for each value W of the domain are
⌈log2(N)⌉.

94

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

real 1000 00 The basic
domain are
floating point
numbers. A
floating point
number consists
of two integer
fields, one the
first, for the
exponent E and
one, the second,
for the mantissa
M . The floating
point num-
ber Z is then
Z = M ∗ 2E .

It follow two parameters. The first
parameter specifies the domain of the
mantissa and the second for the expo-
nent. The specification of the domains
is as described in this table (without the
domains individually padded with 0).
Both domains have to be domains for
integers (ie. integer... or naturalNum-
ber...).

95

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

realValues 1000 01 The basic
domain are
floating point
numbers. A
floating point
number consists
of two integer
fields, one the
first, for the
exponent E and
one, the second,
for the mantissa
M . The floating
point num-
ber Z is then
Z = M ∗ 2E .

The first following 64 bit parameter
is a natural number N , which indi-
cates the number of possible values.
Then follow two parameters. The first
parameter specifies the domain of the
mantissa and the second for the expo-
nent. The specification of the domains
is as described in this table (without the
domains individually padded with 0).
Both domains must come from the do-
mains of integers (ie. integer... or nat-
uralNumber...). After the first three pa-
rameters N floating point numbers fol-
low, each with B = BM + BE bits
in the floating point number represen-
tation for the given mantissa and expo-
nent domains. In which BM are the bits
per mantissa and BE are the bits per ex-
ponent. This N floating point numbers
are all values the elements for the do-
main can be set to. For this the value
of W , in an element to the domain is
mapped / interpreted to the W ’th num-
ber in the list (counting begins at 0).
The bits that are needed for each value
of the domain are ⌈log2(N)⌉.

vector 1100 00
and
1100 01

The basic do-
main are vec-
tors.

The following parameters E is the
number of elements in the vectors. The
(“number of”) parmeter after the intro-
duction “11 0000” is 8 bits long and af-
ter the introduction “11 0001” 64 bits.
After this parameter follows a list of
E domains, as defined in this section.
All the values of the vector domain will
have the form (D1, . . . , DE), where Di

is a value of the i’th domain in the do-
mains list.

96

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

vectorValues 1100 10
and
1100 11

The basic do-
main are vec-
tors.

The following parameters E is the
number of elements in the vectors. The
second parameter N gives the num-
ber of possible vectors. Each (“num-
ber of”) parmeter after the introduction
“1100 10” is 8 bits long and after the
introduction “1100 11” 64 bits. After
the second parameter a list of E do-
mains follows, as defined in this sec-
tion. Then follows a list of N vectors,
as described in section 21.3.1 on page
102. The domains of the vectors are
the given domains of the preceding list.
Variables can also occur in the stored
vectors. The domain for variables in
the list has 0 bits. For a variable in
the vector only the initial 1 is written.
A value of W for the domain in a Fib
element is interpreted as W ’ter vector
of the second list. (The counting starts
at 0.) If the specified vector contains
variables, directly after the value of W
follow the variable identifiers of vari-
ables, as they wher defined above the
current Fib element. The number of
bits for the variable is given by the cor-
responding domain for variables “vari-
able” (see section 21.2.4 on page 87).

97

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

vectorOpenEnd 1110 00
and
1110 01

The basic do-
main are vec-
tors.

The following parameters E is the min-
imum number of elements of the vec-
tor. The (“number of”) parmeter after
the introduction “1110 00 ” is 8 bits
long and after the introduction “1110
01 ” 64 bits. After this parameter
follows a list of E domains, as de-
fined in this section. All the values of
the vector domain will have the form
(D1, . . . , DE , . . . , DE), where Di is a
value of the i’th domain in the list. This
domain is for elements that may con-
tain vectors of different size. The num-
ber of elements for a vector of this do-
main is determined by the element con-
taining the vector.

98

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

domainReference 1111 00 This is a ref-
erence to the
(sub-)domain
of an other
element. The
domain is the
domain of
the element
with the given
domain name
Name.

The first parameter is the in the com-
pressed format coded Name of the
element, to which the domain refer
to (see section 21.2.4 on page 88,
without padding to a full byte). After
it follows the Element parameter, for
the choosen subdomain. First follows
(each) an Element-startbit, which
indicates if an Element parameter
follows. If it is 0 no Element pa-
rameter follows, if it is 1 an Element
parameter follows. If it is 1 this first
Element-startbit is followed by a
1 byte (8 bits) long natural number
Bits, which indicates how many bits
per Element parameter are used.
After this follows the first Element
parameter. After each Element
parameters (stored with the domain
naturalNumberB(Bits)) follows
again an Element-startbit and after it
maybe the next Element parameter
and so forth. Example matrix.3.1: 2
Bits are needed to store the Element
parametes; the bits are (first bit on
the front): 0 0 001111 0 00 11011
1 00000010 11 1 10 0 (in ther or-
der the fields are for: domain name
is 8 bit long; not scaled; domain-
Reference; 8 bit element name; no
parameter; matrixElement; Element
parameter follows; with each 2 bit;
3’th subdomain; Element parameter
follows; first subdomain; no Element
parameter follows)

99

21 COMPRESSED STORING OF FIB OBJECTS

name value bit
3 till 8

description parameter

defaultDomain 1111 01 The specified
domain will be
used only if for
the correspond-
ing element so
far no other
domain was
given.

As a parameter follows a domain as
described in this table. The specified
domain is only used, if for the corre-
sponding element so far no other do-
main was given.

Table 11: 8 Bit parameters for domains

21.2.5 Input variables

In compressed Fib objects variables are numbered and represented as natural num-
bers. In this, the first n variables values in the Fib object are reserved for the n
input variables. Therefore, at this point for the variables only the number of input
variables VE is interesting. For this a 64 bit natural number is stored at this loca-
tion, which contains the number of input variables. After the field for the number
of input variables (VE) follow VE values, each, in ther order, for the default value
Si of the input variable inV ari. The number of bits and the encoding of the default
value of Si is determined by the domain of the input variable inV ari .

The input variable field is padded with 0 bits to a full byte.

21.2.6 Main-Fib-object

At this point the data from the main-Fib-object in form of its elements and their
parameters follows, as it is described below in the section 21.3 on page 102 .

The field for the main-Fib-object is padded with 0 bits to a full byte.

21.2.7 Sub-root-objects

Here a list of sub-root-objects and their identifiers stand. The list is initiated with a
64-bit natural number N , which specifies the number of elements in the list. This
is followed by a 8-bit integer B, which indicates the bytes per identifier.

Then follows a list of N pairs of identifiers and root-elements. The identifier
of each pair is an integer (in the root-element always greater than 0, in the database
less than 0). It is the first element in the list element pairs and is B bytes long. It is
followed by the root-element, as described in this section 21.2 (beginning at page
81). Each pair is padded with 0 bits to full a byte.

100

21 COMPRESSED STORING OF FIB OBJECTS

21.2.8 Identifiers of used database objects

At this point there is a list of all identifiers of Fib database objects, which are used
in the main-Fib-object or in sub-root-objects. This specification of the identifiers is
optional. If identifiers are present, it can be tested from the outset, that all external
Fib objects from the database that are needed exists, or whether it is likely that
display errors occur, since Fib database objects are missing. Whether the identifiers
of Fib database objects that are used in a main-Fib object of a root-element are
given in this root-element, or in a higher root-element, depends on several factors.
For the changing of Fib objects it is advantageous, that identifier of Fib database
objects are listed in a root-element, which is as near as possible to the place of
ther use. To save space it may be useful to subsume the identifiers of Fib database
objects in as few as possible root-elements.

The list is initiated with a 64-bit natural number N , which specifies the num-
ber of elements of the list. This is followed by a 8-bit natural number B, which
specifies the bits per identifier. Then follows the list of N integer identifiers, which
is each B bits long.

The field for the identifiers of used database objects is padded with 0 bits to a
full byte.

21.2.9 Optional part

The optional part is the last part of a root-element. It shouldn’t contain important
information for the presentation of multimedia object, so that it can be omitted
entirely when storing. In this way, storage space can be saved.

The length of the optional part is calculated from the difference between its
starting byte and the end of the root-element (for the offset see section 21.2 on
page 81).

The optional part is initiated by a 16-bit natural number C, which indicates the
compression type of the optional part. Possible values for the compression type C
are listed in table 12 . The remaining optional part will be completely compressed
using the specified method.

value C description
0 no compression
1 The data is compressed in the zlib format. This is a warper (docu-

mented in RFC 1950) for a deflate stream (lossless data compres-
sion, documented in RFC 1951).

Table 12: Compression types

The decompressed optional part consists of a list of key, value pairs. It is
initiated by a 64 bit integer N , which specifies the number of elements in the list.
The second parameter is a 16 bit integer, which determines the coding. Possible

101

21 COMPRESSED STORING OF FIB OBJECTS

values for encoding are listed in table 13 . In this UTF-8 should be regarded as
the standard encoding and other encodings should be selected only if UTF-8 is no
longer sufficient. Then follows the list with the pairs / elements.

Each list element (pair) contains two null-terminated strings in the specified
encoding. The first string is the key of the element and the second is the value.

name value description
UTF-8 0 8-Bit Unicode Transformation Format
UTF-16 1 Universal Multiple-Octet Coded Character Set

(UCS) Transformation Format for 16 Planes of
Group 00

UTF-32 2 Unicode coded one character with 32 Bit

Table 13: Encoding types for strings

From the main-Fib-object all text from the comments (see section 21.3.5 on
page 106) are moved into the optional part. The comments also contain key (Key),
value (V alue) pairs. To each of these key, value pairs from the comments will be
assigned a natural number K (starting with 0). In the optional part a separate
list entry is generated for the moved pair. In this the key of the list entry is “@”
followed by the number of the comment A, then followed by a “@” and then the
original key (Key) of the comment. The value of the generated list entry is equal
to the value of the comment. So if the key value pair in the A’th comment is
(Key, V alue), the entry in the optional part for it is (@A@Key, V alue).

Example: The 2. comment is: “c(“autor”,“ich”, Obj)”, the generated list entry
for it in the optional part is: “(“@2@autor”,“ich”)”.

The outsourced texts should be at the end of the optional part.

21.3 Fib elements

All Fib elements except the root-element will be introduced by a (at least four
bit) bit field. Vectors are directly included in the Fib elements, without ther own
introduction.

The introduction 0000 is reserved, so that with 0 padded areas can not be inter-
preted as a Fib element. The introduction 1111 announces that the introduction is
at least 16 bits long and not 4 bits.

All Fib elements and vector elements follow directly behind each other. If
positions are padded with the 0 bit, this is explicitly stated hereafter.

21.3.1 Vectors

Vectors consist of several elements, an element is either a value or a variable. The
number of elements of the vector is either Fib element specific or is determined by
an associated domain (see section 21.2.4 on page 87).

102

21 COMPRESSED STORING OF FIB OBJECTS

For each element there are two fields:

• one 1 bit field, which determines, if the element is a value (the bit is 0) or a
variable (the bit is 1)

• the field with the value for the element (the genuine value or number / iden-
tifier for the variable)

If the element is a value, then follows after the 1 bit field with 0 directly a value.
The number of bits of the value is determined by the corresponding domain. The
value comes from the unscaled domain and is scaled after restoring.

If the element is a variable, then follows after the 1 bit field with 1 directly the
variable identifier (which is the same natural number as in the variable definition)
of the variable, which was defined above the current Fib element. The number of
bits of the variable is determined by the appropriate domain for variables “variable”
(see section 21.2.4 on page 87).

The in a particular Fib object-branch highest defined variable has the variable
value respectively variable identifier 1 . All other variables have the value i + 1,
where i is the value of the variable, which is defined next above variable. So the
variables are numbered in the Fib object-branches from the top (starting from the
root) to bottom (the leaves), with the starting value of 1.

21.3.2 Point

Introduction of a normal point: 0001
Five bits introduction for a point with an empty position vector (point(())): 00010
Five bits introduction for a point with no position vector (point()): 10010

For the description of the point element see section 9.2 on page 6 .
Normal points contain a position vector (see 21.3.1). The number of vector

elements is determined by the number of dimensions respectively elements in the
domain for dimensions (“dim”). The bits per position vector element is determined
by the particular element of the domain for the dimensions (“dim”) or by the do-
main variables (“variable”) (see section 21.2.4 on page 87).

The individual vector elements follow directly after the introduction of the
point.

Points with an empty or without a position vector does not contain any bits for
the position vector. For these points there are only the 5 bits of the respectively
introduction.

Example: A point is encoded with the position vector (2, 10). The multimedia
object has two dimensions. For both dimensions, 5 bits are needed, there are natural
numbers.

• introduction point: 0001

103

21 COMPRESSED STORING OF FIB OBJECTS

• first position vector element (leading 0 for: “vector element is a value”) 2 :
0 00010

• second position vector element (leading 0 for: “vector element is a value”)
10 : 0 01010

• coded point object (first bit in front): 1000010000010100

21.3.3 Properties

Introduction: 0011

For the description of the property element see section 9.3 on page 7 .
The property vector type is determined by a natural number, which immedi-

ately follows after the introduction. In the list of the valid domains the possible
properties are listed (see section 9.14.2 on page 35, table 2 on page 12 and table 5
on page 43). The number for the property (vector) type is the number of the prop-
erty in the valid domains list. Counted are only property domains and the count
starts with 0 .

In the valid domain list first domains for values (see section 9.14.2 on page 47)
and than the domains for elements (see section 9.14.2 on page 45 are listed. In-
herited property domains, which are not overwritten, will be counted as if they are
behind the domains of the current (respectively next) root-element. (The closer the
inherited root-element is to the inheriting root-element, the smaller are the numbers
of inherited property domains [respectively for values and element domains].)

For property types, that exists in the Fib object, but for which no domain exists,
a domain (e.g. the standard domain) must inserted in the domains for values. Only
then the property vector types can be numbered.

The number of bits, that are needed for the number of property vector type,
results from the number of defined (including inherited) property domains DE as
a whole, it is ⌈log2(DE)⌉. If for example property domains colorRGB, layer
and sound are defined. Then ⌈log2(3)⌉ = 2 bits are needed to store the property
vector type and the property layer has the value 01 .

The property vector type is followed by the elements of the property vector
(see section 21.3.1 on page 102). In which the number of elements and bits are
determined by the respectively domain (see section 21.2.4 on page 87).

At the end the subobject of the property follows.

For the properties there are two special properties, that have influence on the de-
coding of the Fib object. These properties are “checksum” and “boundSize”.

Checksum The checksum property is used to find erroneous Fib objects and to
maybe correct these errors.

Its name is “checksum”. It has 3 parameters. The first parameter A is for the
type of the checksum. The second parameter B determines for how many number

104

21 COMPRESSED STORING OF FIB OBJECTS

of bits the checksum should be generated and the third parameter C determines
how many bits of the checksum should have.

Checksum of the type 1 If the first parameter A is equal to 1 the checksum
is generated in the manner described in this section.

The checksum stands before the block it belongs to.
The checksum property applies to the entire Fib object respectively Fib branch

that is contained in the property element (its entire subobject), except those which
have a separate / own checksum property. When loading the Fib object, blocks
of the size of C + B bits are loaded, where the block, wich lie at the end of the
checksum field, is padded with 0. From each Fib object it will be only read as
much as belongs to the checksum field and the rest of the block is padded with 0 .

If the checksum field Cb1 is interrupted by another checksum field (object)
CB2, after the checksum field (object) CB2 a new block for the checksum field
Cb1 will be start and read.

When storing the subobject of the property element of the checksum, the entire
subobject is first brought into the compressed form, as described in this section 21 .
From the created bit field, all areas which not belong to the checksum property are
cut out, since they belong to different checksum properties, which are treated sepa-
rately. As a result of this from the compressed subobject of the checksum property
several bit fields Bfi for the checksum property are created. These bit fields Bfi
are divided into blocks of B bits, where each of the last blocks of a bit fields Bfi
are padded with the 0 bit to B bits. Then for each of the blocks the checksum of
C bits computed. After this step the blocks for each Bfi are assembled in their
original order into bit fields, in which for each block first the checksum field of the
block and then the associated data block comes. These bit fields are then concate-
nate into their original order with the other properties checksum fields, which were
treated separately, into a bit field for the entire subobject.

The checksum is not only used for error detection, but if possible (if enough
checksum bits are present) also for error correction.

Size of Fib objects With the property “boundSize” it will be specified, that the
size in bits for an Fib object should be stated. Although no vector elements exists
for this property in the created Fib object, one vector element is generated when
storing the object, also for the vector a domain is created in the root-element when
storing (see section 21.2.4 on page 87).

The vector element in a compressed format contains the number of bits, that
the contained Fib object is long (including any checksums). If the Fib object is
irreparably defective, in this way the beginning of the next Fib object can still be
found and this Fib object can be restored. Without specifying the length of the
Fib object Obj1 the beginning of following Fib object Obj2 in the data stream can
probably not be determined, since it is unknown how long the elements of Obj1
are. If Obj1 is irreparably flawed, but the starting point respectively the starting bit

105

21 COMPRESSED STORING OF FIB OBJECTS

of the next Fib object Obj2 is known, then indeed the Obj1 can not be displayed,
but this will have no effect on multimedia information outside of Obj1, so that the
error is limited to Obj1 .

The property of “boundSize” should best be used as the first / top element of a
subobject in branch elements.

21.3.4 List element

Possible introductions:

• 0100: introduction for two subobjects

• 0101: less than 256 subobjects

• 0110: less than 264 subobjects

For the description of the list element see section 9.4 on page 14 .
The list element indicates that hereafter come several Fib objects in a row.

Directly after the introduction of the list element follows a natural number, which
indicats the number of the following subobjects. The length of the field, for the
number of subobjects, depends on the introduction of the list element.

The following lengths for the number field exists:

• Introductions of the list element 0100: The field for the number of subobjects
is 0 bits long, respectively it is omitted.

• Introductions of the list element 0101: The field for the number of subobjects
is 8 bits long.

• Introductions of the list element 0110: The field for the number of subobjects
is 64 bits long.

After the field for the number of subobjects follow the subobjects. Where the
first following subobject, is the first subobject of the list element, the following is
the second subobject of the list element, etc..

More information for the list element is not needed, because the length of sub-
objects is apparent from the subobjects themselves.

21.3.5 Comment element

Introduction: 0111

For the description of the comment element see section 9.5 on page 14 .
The comment element contains after its introduction a natural number N , which

indicates the number of the comment. The domain “comments” of this number is
determined by the root-element (see section 21.2.4 on page 87).

106

21 COMPRESSED STORING OF FIB OBJECTS

This is followed by the subobject of the comment element.
In the optional part of the associated root-element for each comment an entry

is created. More details can be found in the section 21.2.9 on page 102 .

21.3.6 Area element

Introduction: 1000

For the description of the area element see section 9.6 on page 16 .
The introduction is follows by a natural number, for the number of subareas.

The bits for this number resulting from the first element / subdomain of the vector
domain for the “area” type.

After this follow the subareas. The subareas are vectors that consist of two
elements (for vectors see section 21.3.1 on page 102). The corresponding domains
for the elements of the subarea vectors are determined by the second subdomain of
the domain “area” for the values and the “variable” domain for the variables (see
section 21.2.4 on page 87).

At the end of the area object follows its subobject.

21.3.7 Function

Introduction: 1011

For the description of the function element see section 9.7 on page 17 .
After the introduction follows the subfunction of the function.
At the end of the function object follows its subobject.

Subfunction
Subfunctions are initiated by two bits for the type of subfunction:

• 00: value

• 01: variable

• 10: subfunction with arity of one

• 11: subfunction with arity of two

If the subfunction is a value (Introduction: 00), the value is directly following
after the introduction 00 . The number of bits of the value is determined by the
appropriate domain for subfunctions “subfunction” (see section 21.2.4 on page 87).

If the subfunction is a variable (Introduction: 01), the variable identifier /name,
of a variable defined above the function element, is directly following after the
introduction 01 . The number of bits of the variable identifier is determined by the
appropriate domain for variables “variable” (see section 21.2.4 on page 87).

107

21 COMPRESSED STORING OF FIB OBJECTS

If the subfunction has an arity of one (introduction: 10), a (at least 2 bits) bit
field follows directly the introduction 10, which indicates the type of subfunction.
Immediately after the bit field follows another subfunction (initiated by the 2 bits
for its type), which is the subfunction of the subfunction with arity of one.

Values for the type of a subfunction with an arity of one:

• 00: absolut value

• 01: sine function

• 10: The introduction of rarely used one arity functions. The next two bits
indicate the type of the one arity subfunction:

– 00 10: logarithm

– 01 10: arc sine

– 10 10: round

– 11 10: free for future assignments

• 11: The introduction of rarely used one arity functions. The next 6 bits
indicate the type of one arity subfunction:

– **** ** 11: free for future assignments

If the subfunction has an arity of two (introduction: 11), a (at least 3 bits) bit
field follows directly the introduction 11, which indicates the type of subfunction.
Immediately after the bit field follow two other subfunctions (initiated each by the
2 bits for their type), which are the subfunctions of the subfunction with arity of
two.

Values for the type of a subfunction with an arity of two:

• 000: adding

• 001: subtraction

• 010: multiplication

• 011: division

• 100: exponentiation

• 101: minimum

• 110: maximum

• 111: The introduction of rarely used two arity functions. The next 5 bits
indicate the type of two arity subfunction:

108

21 COMPRESSED STORING OF FIB OBJECTS

– 0000 0 111: if-function (before the two other subfunctions, first the
condition the if-subfunction is stored)

– 0000 1 111: delay

– 0001 0 111: modulo

– **** * 111: free for future assignments

Example:

• example object: fun(x3 , mult(sin(5), x1), ...)

• bits for “fun” (introduction): 1011

• bits for “mult” (introduction for “two arity subfunction” and “mult”): 11 010

• bits for “sin” (introduction for “one arity subfunction” and “sin”): 10 01

• bits for the value 5 (introduction for “value” and 5 as a 4 bit natural number
with the value domain “subfunction” as “naturalNumberB(4)”, which means
a 4 bit natural number): 00 0101

• bits for die Variable x1 (the first variable in the part object branch, introduc-
tion for “variable” and the 4 bit variable identifier): 01 0001

• bits for the entire function element: 1011 11 010 10 01 00 0101 01 0001
... (=Bits for the subobject)

• bits for the entire function element (first bit at the front): 1101 1101 0011
0001 0101 0100 0 ... (=Bits for the subobject)

21.3.8 If-element

Introduction: 1100

For the description of the if-element see section 9.8 on page 24 .
After the introduction follows the condition of the if-element.
At the end of the if-object follow the two subobjects. If the condition is true,

only the first subobject is evaluated, if the condition is false, only the second sub-
object is evaluated.

Conditions Conditions are introduced by a 4-bit value for the type of the condi-
tion. After the introduction of the condition follows as a parameter either 0 till 2
subconditions or two subfunctions (see section 21.3.7 on page 107)

The possible conditions are listed in table 14.

Example:

109

21 COMPRESSED STORING OF FIB OBJECTS

name introduc-
tion

description parameter

false 0000 The condition is false. none
true 1111 The condition is true. none
not 0001 The condition is true if and only if

the subcondition is false, otherwise
it is false.

one subcondition

or 0010 The condition is true if and only if
at least one of its two subconditions
is true, otherwise it is false.

two subconditions

and 0011 The condition is true if and only if
the two subconditions are true, oth-
erwise it is false.

two subconditions

xor 0100 The condition is true if and only
if exactly one of the two subcondi-
tions is true, otherwise it is false.

two subconditions

eqInt 1000 Comparison of two to integers
rounded numbers on equality.

two subfunctions, as de-
scribed in section 21.3.7
on page 107

lo 1001 Comparison, if the first number is
less than the second.

two subfunctions, as de-
scribed in section 21.3.7
on page 107

gr 1010 Comparison, if the first number is
greater than the second.

two subfunctions, as de-
scribed in section 21.3.7
on page 107

0101 till
0111 and
1011 till
1110

Free for future conditions.

Table 14: Introduction for conditions

110

21 COMPRESSED STORING OF FIB OBJECTS

• example object: if(and(true, gr(x1, 3)), ...)

• bits for “if” (introduction): 1100

• bits for “and” (introduction for “and”): 0011

• bits for “true” (introduction for “true”): 1111

• bits for “gr” (introduction for “gr”): 1010

• bits for the variable x1 (the first variable in the part object branch, introduc-
tion for “variable” and the variable identifier; the variable domain “variable”
is “naturalNumberB(4)”, which means a 4 bit natural number): 01 0001

• bits for the value 3 (introduction for “value” and 3 as a 4 bit natural number
with the value domain “subfunction” as “naturalNumberB(4)”, which means
a 4 bit natural number): 00 0011

• bits for the entire if-element (first bit at the front):
00111100 11110101 10100000 1100 ... (=Bits for the two subobjects)

21.3.9 External object

Introduction: 1101

For the description of the external objects see section 9.9 on page 25 .
Directly after the introduction follows the number of the identifier of the exter-

nal object. Its domain, and therefore the number of bits for it, is determined by the
first subdomain of the domain “externObject” (see section 21.2.4 on page 87) .

The identifier is followed by the number of input values E, which has the
domain of second subdomain of the domain ‘externObject”. If this value is 0 the
number of input values is the number of vector elements of the vector for input
values, this means the number of elements of the domain ”externObjectInput” with
the corresponding identifier, if non such exists it is assumed that no / 0 input values
(E = 0) exist.

Then follows the vector (see section 21.3.1 on page 102) with the input val-
ues. The domain for the vector is the domain for the “externObjectInput” with the
corresponding identifier or vectorOpenEnd(integerB(8)), if non such exist.

After the list of input values follow the subobjects of the external object. These
are preceded by a number U for the number of subobjects. The domain of this
number U is the third subdomain of the domain “externObject”. Then follow one
after the other the U records of the U subobjects.

Each record for a subobject is introduced by a number representing the number
of output variables Ai (i = 1 . . . U). The domain of this number Ai is the fourth
subdomain of the domain “externObject”.

At the end follows the subobject of the record, which is a normal Fib object.

111

21 COMPRESSED STORING OF FIB OBJECTS

21.3.10 External subobject

Introduction: 1110

For the description of the external subobjects see section 9.10 on page 26 .
After the introduction follows a natural number for the number of the external

subobject. The domain of this number is implicit determined by the number N of
the subobjects (respectively the highest number for a “externSubobject” domain)
in the current / next in the next root-element, see section 21.2.4 on page 92 . The
domain is: integer(N) , see table 11 on page 100 .

This is followed by the vector (see section 21.3.1 on page 102) of the input
values, respectively the input variables for the subobject. The domain for the out-
put values vector is the domain for the “externSubobject” with the corresponding
number or the standard domain for “externSubobject”, if non such domain exist.

21.3.11 Retrieve domain properties

Introduction: 0000 0000 0000 1111

For the description of the Fib element to retrieve domain properties see section
9.11 on page 27 .

After the introduction follows the domain, from wich a value should be re-
trieved. The specification of the domain is in the form described in section 21.2.4
on page 87 (without padding to a full byte).

Then follows the Element parameter, for the choosen subdomain. First fol-
lows (each) an Element-startbit, which indicates if an Element parameter fol-
lows. If it is 0 no Element parameter follows, if it is 1 an Element parame-
ter follows. If it is 1 this first Element-startbit is followed by a 1 byte (8 bits)
long natural number Bits, which indicates how many bits per Element parameter
are used. After this follows the first Element parameter. After each Element
parameters (stored with the domain naturalNumberB(Bits)) follows again an
Element-startbit and after it maybe the next Element parameter and so forth.
Example matrix.3.1: 2 Bits are needed to store the Element parametes; the bits
are (first bit on the front): 1111 0000 0000 0000 0 00 11011 1 00000010 11 1 10 0
(in ther order the fields are for: Fib element to retrieve domain; 8 bit element name;
no parameter; matrixElement; Element parameter follows; with each 2 bit; 3’th
subdomain; Element parameter follows; first subdomain; no Element parameter
follows)

After the bits for the element follows the Mode, this means what property
value of the domain is selected. This is an 8-bit integer, as described in table 4 on
page 29 in the column “value”.

At the end of the Fib element to retrieve domain properties follows its subob-
ject.

112

21 COMPRESSED STORING OF FIB OBJECTS

21.3.12 Set-element

Introduction: 0000 0000 0001 1111

For the description of the set-element see section 9.12 on page 30 .
The domain for the set-element is “setElement” (see section 21.2.4 on page

87).
After the introduction first follows one bit, that indicates whether a particular

domain is used. If this bit is 0 no domain number DomainNr is given and the
DomainNr is set to 0 . Otherwise, if it is 1, a natural number follows for the
used domain DomainNr . The number of bits for this number results from the
largest number max(i) for a domain for the set-element and is ⌈log2(max(i))⌉.
The DomainNr determines the domain of the element. It is the first “setElement”
domain with a domain number equal or lower of the set (loaded) domain number
DomainNr.

Then follow two natural numbers.
The first number indicates the number (n) of the variables and to set values per

set. The bits for this number resulting from the first element / subdomain of the
vector domain for the element.

The second number indicates the number (k) of the sets of values to be set.
The bits for this number results from the second element / subdomain of the vector
domain for the element.

Following the two count values are k sets respectively vectors (see section
21.3.1 on page 102) with each n values (respectively it follow k ∗ n values / vector
elements in a row). The domain for the vectors respectively sets is the third element
/ subdomain of the vector domain for the element.

At the end of the set-element follows its subobject.

21.3.13 Matrix element

Introduction: 0000 0000 0010 1111

For the description of the matrix element see section 9.13 on page 31 .
The domain for the matrix element is “matrixElement” (see section 21.2.4 on

page 87).
After the introduction first follows one bit, that indicates whether a particular

domain is used. If this bit is 0 no domain number DomainNr is given and the
DomainNr is set to 0 . Otherwise, if it is 1, a natural number follows for the used
domain DomainNr . The number of bits for this number results from the largest
number max(i) for a domain for the matrix element and is ⌈log2(max(i))⌉. The
DomainNr determines the domain of the element. It is the first “matrixElement”
domain with a domain number equal or lower of the set (loaded) domain number
DomainNr.

Then follow three natural numbers.

113

22 XML FORMAT

The first number indicates the number (d) of the dimensions / dimension vari-
ables.

The second number indicates the number (i) of the to set values per set. The
bits for the first two numbers resulting from the first element / subdomain of the
vector domain for the element.

The third number indicates the number (k) of the sets of values to be set. The
bits for this number resulting from the second element / subdomain of the vector
domain for the element.

Following the three count values are d vectors (see section 21.3.1 on page 102)
for the areas respectively start and end values for the respective dimensions. In
this, the first vector stands for the first dimension variable, the second vector for
the second dimension variable, etc. . The domain for the vectors / sets is the third
element / subdomain of the vector domain for the element.

After the dimension vectors follow k vectors / sets (see section 21.3.1 on page
102) with each i values (respectively it follow k ∗ i values / vector elements in a
row). The domain for the vectors / sets is the forth element / subdomain of the
vector domain for the element.

At the end of the matrix element follows its subobject.

22 XML format

Each Fib element and each vector has its own XML element in the XML format.
Simple values of Fib elements and vectors are stored as attributes.

In the following listing a simple example of a Fib object in XML format is
specified.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<fib_object

xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.fib-development.org/"
xsd:schemaLocation="http://www.fib-development.org/fib.xsd">

<root>
<multimedia_info fib_version="1" db_version="0"/>
<optionalpart>

<pair key="autor" value="Oesterholz"/>
</optionalpart>
<domains>

<dim count="2">
<dimension number="1" direction="horizontal"/>
<dimension number="2" direction="vertical"/>
<vector elements="2">

114

22 XML FORMAT

<naturalNumberB bit="8">
<integer min="10" max="123">

</vector>
</dim>

</domains>
<main_fib_object>

<area defined_variable="1">
<vector type="subarea">

<value>3</value>
<value>15</value>

</vector>

<property>
<vector type="property.colorGrayscale">

<value>200</value>
</vector>
<point>

<vector type="position">
<value>4</value>
<variable>1</variable>

</vector>
</point>

</property>
</area>

</main_fib_object>
</root>

</fib_object>

22.1 XML header

The header of the Fib XML format is structured the same in each case. It specifies
the XML format. The top element of the Fib XML format is always an element
named fib_object. This contains the attributes to specify the XML format and
one root-object.

Layout:

<?xml version="1.0" encoding="UTF-8"?>
<fib_object

xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.fib-development.org/"
xsd:schemaLocation="http://www.fib-development.org/fib.xsd">

... <!-- root-element -->

115

22 XML FORMAT

</fib_object>

22.2 Root-element

For the description of the root-element see section 9.14 on page 33 .
The element for the root-element has the name root.
The root-element can contain the following elements:

1. multimedia information (see section 22.2.1 on page 116)

2. the optional part (see section 22.2.2 on page 117)

3. domains (see section 22.2.3 on page 117)

4. domains for values (see section 22.2.3 on page 117)

5. input variables (see section 22.2.4 on page 125)

6. main-Fib-object (see section 22.2.5 on page 126); this element is always
present

7. sub-root-objects (see section 22.2.6 on page 126)

8. identifiers of used database objects (see section 22.2.7 on page 127)

9. maybe a checksum field (see section 22.2.8 on page 127), this is irrelevant
for the Fib XML format and it only serves for the data storage

22.2.1 Multimedia information

The element for the multimedia information has the name multimedia_info.
The element for the multimedia information has two attributes one for the ver-

sion of Fib and one for the version of the Fib database.
The attribute fib_version indicates the Fib version of the Fib object and

the attribute db_version the database version. Both version numbers are natural
numbers. They can be mapped to a human-readable form (e.g. “Fib V1.2.3”). In
the multimedia information element only numbers are used, otherwise a certain
form would have to be established, which can be changed afterwards only with
difficulty. There may be a human readable form of the versions specified in the
optional part.

An example for the multimedia information:

<multimedia_info fib_version="1" db_version="0"/>

116

22 XML FORMAT

22.2.2 Optional part

The element for the optional part has the name optionalpart.
It contains a list of elements for the entries in the optional part. These elements

have the name pair. The pair elements have two attributes key and value.
The attribute key contains the key and the attribute value contains the value of
the entry.

An example for the optional part:

<optionalpart>
<pair key="copyright" value="GNU GPL 3"/>
<pair key="type" value="the Berlin wall"/>

</optionalpart>

22.2.3 Domains

The element for the domains element has the name domains and consists of a
domain list.

The domain for values element has the name valueDomains and has the
same structure as the domain element with the name domains. This element
(valueDomains) has no effect when saving in XML format, but is for keeping
the information.

The domain list identifies the domains of each element, if a value (e.g. a vari-
able) is outside its domain, it is rounded to a value within the domain. Values
outside these domains can thus not occur for the element.

The domains for values include also domains, but these domains only apply to
actual values in elements and not for values of contained variables. The domains
for values determine how many bits are needed for compressed storing (see section
21 on page 80) of an element that contains a value. The domains for values are
useful when the values of an element do not cover the full possible range of the
domain for the element. For example, if a subobject contains only points whose
position vectors only contain variables and integer values between 0 and 10, the
domain for values for position vectors can be set to “integerB” with 4 bits, even if
the variables of the position vectors taking values greater 100 .

The reason for the introduction of central (in the root-elements) domains is, that
on the one hand as little space for values should be used when compressed storing
the Fib object, without drastically limit the assignment possibilities for the values
and on other hand that it can be determined in advance if and how the multimedia
object can be displayed (e.g. if and how it should be scaled or whether the display
of all values is impossible). If for example, the domain for the dimension takes
only integer values between 0 and 50 (e.g. the horizontal in an image), then 6 bits
is enough to store the values for the dimension. For larger images simply more bits
for the values of the dimension can be used.

117

22 XML FORMAT

Each of the two domain lists contains a number of domain entries. A domain entry
is an XML element for the type of Fib element for which it applies. This XML
element in turn contains the actual domain.

XML element names for Fib elements The table 15 lists the names of XML
elements and the attributes of the XML elements for the various types respectively
Fib elements.

name description
dim The domain is for position vectors respectively dimensions. The

attribute is count, which indicates the number of dimensions
Dim. This element contains one element for each dimension
with the name dimension. A dimension element has two
attributs number and direction. The attribute number is a
natural number greater than 0, which indicates the number of the
dimension. In the position vectors the number’th element is for
the dimension. The attribute direction indicates the direction
in which the dimension goes. This is a natural number, which in-
dicates, in which direction the number’th dimension is mapped.
The possible values are described in table 7 on page 46.

subfunction domain for the elements of subfunctions
property This is the domain of property elements with the given name. The

attribute name contains the name of the property. Possible names
are listed in table 2 on page 12.

inVar This is the domain for the number’th input variable. The at-
tribute is number, which indicates the number of the input vari-
able. (The count of the input variables of a root-element starts at
1 .)

Names of XML elements for domains that are relevant
for compressed storing

area This type is for domains for the area element (see section 9.6 on
page 16). The corresponding domain is a vector domain with 2
elements / subdomains. The first element or the first subdomain
is used for the number (n) of subareas / vectors, it is part of the
domain of the natural numbers. The second element is the domain
for the subareas (B1), it is a vector domain with two elements or
subdomains, each of which come from the domain of integers.

variable Values that are needed to encode variables. The domain should
include the natural numbers from 0 to the maximum number of
variables defined in the Fib leafs in the main-Fib-object. The Fib
tree-leaf in the main-Fib-object above which the most variables
are defined respectively the branch with the most defined vari-
ables, thus determins the domain.

118

22 XML FORMAT

name description
comments Values that are needed to encode comments. The domain should

include the natural numbers from 0 to the number of comments
in the main-Fib-object.

externObject This is the domain for external objects (see section 9.9 on page
25) in the main-Fib-object. The domain is a vector with 4 ele-
ments. The vector elements are in ther the order for the identi-
fier, the number of input values, the number of subobjects and
the number of output variables. All vector element domains, ex-
cept for the identifier, are part of the natural numbers. The vector
element domain for the identifier is part of the integers.

externObjectInput This domain is for the input values for external objects (see sec-
tion 9.9 on page 25) . The domain is an vector domain. The at-
tribute identifier is an integer and determines the identifier
of the external object, for which elements the domain is.

externSubobject This domain type is for the input values for external subobjects
(see section 9.10 on page 26). The domain is an vector domain.
The attribute number is a natural number and determines the
number of the external subobject, for which elements the domain
is.

externSubobject This domain type is for the number of input variables for external
subobjects (see section 9.10 on page 26). The domain is always a
subset of the natural numbers.

setElement This type is for the domain for the set-element (see section 9.12
on page 30). The corresponding domain is a vector domain with
3 elements / subdomains. The first element or the first subdomain
is used for the number (n) of variables and number of values to
be set per set, it is part of the domain of the natural numbers. The
second element or the second subdomain is used for the number
(k) of the sets of values to be set. It is also part of the domain of
the natural numbers. The third and final element is the domain
for the vectors for the values to be set (Wi.g) and is a domain for
vectors, which element- or subdomains are domains for numbers
(scalar). Further as an attribut domainNr a natural number can
be specified for the domain number DomainNr. If the attribute
domainNr is missing, the domain number DomainNr is 0 .

119

22 XML FORMAT

name description
matrixElement This type is for the domain for the matrix-element (see section

9.13 on page 31). The corresponding domain is a vector domain
with 4 elements / subdomains. The first element or the first sub-
domain is used for the number (d) of dimension variables, the
number i of value variables and number of values i to be set per
set, it is part of the domain of the natural numbers. The second
element or the second subdomain is used for the number (k) of
the sets of values to be set. It is also part of the domain of the
natural numbers. The third element is the domain for the areas
respectively for the start and end values for the different dimen-
sion variables, it is a vector domain with two elements or sub-
domains, each of which come from the domain of integers.The
fourth and final element is the domain for the vectors for the val-
ues to be set (Wa.b) and is a domain for vectors, which element-
or subdomains are domains for numbers (scalar). Further as an
attribut domainNr a natural number can be specified for the do-
main number DomainNr. If the attribute domainNr is miss-
ing, the domain number DomainNr is 0 .

Table 15: Names of XML elements for domains

Possible domains Each domain is assigned its own XML element. Each XML
element for a domain can have an attribute scalingfactor for the scaling fac-
tor. This may be omitted, if the scaling factor is 1, respectively the scaling factor is
1 if it is omitted.

The scaling factor scalingfactor is a floating point number, with which
the values of the unscaled domain or the basic domain are multiplied to obtain the
scaled domain.
Example: The domain is 2 bit natural numbers with the scaling factor of F = 0.5
. Possible values for the element to the domain are: { 0 ∗ 0.5 = 0; 1 ∗ 0.5 = 0.5;
2 ∗ 0.5 = 1; 3 ∗ 0.5 = 1.5 }. If in the element to the domain a number is set that
would mean 3 unscaled, it means with the scaling 1.5. The XML Element for the
domain: <naturalNumberB scalingfactor="0.5" bit="2"/>

The table 16 lists the names of XML elements and attributes of XML elements for
the various domains.

120

22 XML FORMAT

name description parameter
naturalNumberB The basic

domain are
the natural
numbers.

The attribute bit is a natural number, which
indicates the number of bits for values of the
domain. The corresponding basic domain is
0 . . . (2bit− 1) .

integerB The basic do-
main are the in-
teger numbers.

The attribute bit is a natural number, which
indicates the number of bits for values of the
domain. The corresponding basic domain is
−(2bit−1) . . . (2bit−1 − 1) .

naturalNumber The basic
domain are
the natural
numbers.

The attribute max is a natural number, which is
the largest natural number in the domain. The
corresponding basic domain is 0 . . .max.

integer The basic do-
main are the in-
teger numbers.

The two attributes min and max are two integers.
The attribute min is the smallest number in the
domain. The attribute max is the biggest number
in the domain. The corresponding basic domain
is min . . .max.

integerValues The basic do-
main are the in-
teger numbers.

For each value of the basic domain the
integerValues element contains one
value element, in which the value is given (for
example <value>17</value>).

real The basic
domain are
floating point
numbers. A
floating point
number consists
of two integer
fields, one the
first, for the
exponent E and
one, the second,
for the mantissa
M . The floating
point num-
ber Z is then
Z = M ∗ 2E .

This element contains two elements. The first
element specifies the domain of the mantissa and
the second for the exponent. The specification
of the domains is as described in this table.
Both domains must come from the domains
of integers (ie. integer... or naturalNumber...).
Example: <real>
<integer min="-100" max="100"/>
<naturalNumberB
scalingfactor="0.1"
bit="8"/></real> The mantissa is a

natural number from −100 to 100 and the
exponent is an eight-bit natural number scaled
by 0.1 .

121

22 XML FORMAT

name description parameter
realValues The basic

domain are
floating point
numbers. A
floating point
number consists
of two integer
fields, one the
first, for the
exponent E and
one, the second,
for the mantissa
M . The floating
point num-
ber Z is then
Z = M ∗ 2E .

This element contains several elements. The first
element specifies the domain of the mantissa and
the second for the exponent. The specification
of the domains is as described in this table. Both
domains must come from the domains of integers
(ie. integer... or naturalNumber...). After the
first two parameters the value-elements for the
possible floating point numbers of the domain
follow (e.g. <value>17.14</value>).
Example: <real> <integer min="-100"
max="100"/> <naturalNumberB
scalingfactor="0.1" bit="8"/>
<value>7*2^0.5</value>
<value>31*2^10</value> </real>
The mantissa is a natural number from −100
to 100 and the exponent is an eight-bit integer
scaled by 0.1 . The values in the domain are
7 ∗ 20.5 ≈ 9.9 and 31 ∗ 210 ≈ 31744

vector The basic do-
main are vec-
tors.

The element has one attribute elements, which
indicates the number of elements E in the vec-
tors. The XML element vector also con-
tains for each of the vector elements (this means
elements piece) a XML element with the do-
main for the element of the vector. Where the
first XML element contains the domain of the
first vector element, the second of the second and
so on. All the values of the vector domain will
have the form (D1, . . . , DE), where Di is a value
of the i’th domain in the domains list.

122

22 XML FORMAT

name description parameter
vectorValues The basic do-

main are vec-
tors.

The element has one attribute elements,
which indicates the number of elements E in the
vectors. The XML element vectorValues
also contains for each of the vector elements (this
means elements piece) an XML element with
the domain for the element of the vector. Where
the first XML element contains the domain of
the first vector element, the second of the second
and so on. Then follows a list with the vectors, as
described in section 22.3.1 on page 128 without
the type attributes. The domains of the vectors
are the given domains of the preceding list.
Variables can also occur in the stored vectors.
If a variable is an element in a the vector the
identifier for the variable is omitted. Exam-
ple: <vectorValues elements="2">
<integer min="-100" max="100"/>
<naturalNumberB
scalingfactor="0.1" bit="8"/>
<vector> <value>99</value>
<value>2</value> </vector>
<vector> <value>-17</value>
<variable></variable> </vector>
</vectorValues> ; This domain dosn’t
change anything for the notation of a vector in a
Fib element in the XML format. Vectors will be
stored like with the vector domain.

123

22 XML FORMAT

name description parameter
vectorOpenEnd The basic do-

main are vec-
tors.

The element has one attribute elements,
which indicates the minimum number of ele-
ments E in the vectors. The XML element
vectorOpenEnd also contains for each of the
vector elements (this means elements piece)
an XML element with the domain for the ele-
ment of the vector. Where the first XML element
contains the domain of the first vector element,
the second of the second and so on and the E’te
domain is for E’th and the following elements.
All the values of the vector domain will have
the form (D1, . . . , DE , . . . , DE), where Di is a
value of the i’th domain in the domains list. This
domain is for elements that may contain vectors
of different size. The number of elements for a
vector of this domain is determined by the ele-
ment containing the vector.

domainReference This is a ref-
erence to the
(sub-)domain
of an other
element. The
domain is the
domain of the
element with
the given type
element.

The element can contain the optional attribute
subdomain. The attribute subdomain spec-
ifies the subdomain which should be used. In
it the numbers (counting starts with 1) of the
subdomains to use is stored. Subdomains of
more levels can be given separated by a point
betwean them. In which the number of a sub-
domain stands befor the number of the subdo-
mains contained in it. The domainReference
contains a XML element for the type ele-
ment to which it refers to. This XML ele-
ment is generated as described in table 15 on
page 120 . Example <domainReference
subdomain="3.1"> <matrixElement/>
</domainReference>: The used domain is
the first subdomain of the third subdoamin of the
matrix element.

defaultDomain The specified
domain will be
used only if for
the correspond-
ing element so
far no other
domain was
given.

The element contains a Xml element of a domain
as described in this table. The specified domain
is only used, if for the corresponding element so
far no other domain was given.

124

22 XML FORMAT

name description parameter
Table 16: Elements for domains

An example for the domains:

<domains>
<dim count="2">

<dimension number="1" direction="horizontal"/>
<dimension number="2" direction="vertical"/>
<vector elements="2">

<naturalNumberB scalingfactor="0.1" bit="8"/>
<integer scalingfactor="0.1" min="10" max="110"/>

</vector>
</dim>
<property name="colorRGB">

<vector elements="3">
<naturalNumberB bit="8"/>
<integer min="-10" max="246"/>
<naturalNumberB bit="9"/>

</vector>
</property>

</domains>
<valueDomains>

<property name="colorRGB">
<vector elements="3">

<naturalNumberB bit="4"/>
<integer min="-10" max="10"/>
<integerValues>

<value>17</value>
<value>-3</value>
<value>12</value>
<value>124</value>

</integerValues>
</vector>

</property>
</valueDomains>

22.2.4 Input variables

The XML element for the input variables is named input_variables. It con-
tains for each input variable an XML element named variable. The variable

125

22 XML FORMAT

element has two attributes number and default. The attribute number is the
number of input variable. With the attribute default the default value of the
input variable is set.

An example for the input variable element:

<input_variables>
<variable number="1" default="3"/>
<variable number="2" default="17.3"/>

</input_variables>

22.2.5 Main-Fib-object

At this point the data from the main-Fib-object stand in the form of its elements
and their parameters, as described in the section 22.3 on page 127. It is packaged
in a XML element named main_fib_object.

An example for the main-Fib-object:

<main_fib_object>
...<!-- main-Fib-object -->

</main_fib_object>

22.2.6 Sub-root-objects

The XML element for the sub-root-objects is named sub_roots. It contains for
each sub-root-object an XML element named sub_root. The element sub_root
has the attribute identifier, which specifies the identifier of the sub-root-
object (it is an integer). The element sub_root also contains the corresponding
root-object, as described in this section 22.2.

An example for the sub-root-objects:

<sub_roots>
<sub_root identifier="1">

<root>
...

<\root>
</sub_root>
<sub_root identifier="3">

<root>
...

<\root>
</sub_root>

</sub_roots>

126

22 XML FORMAT

22.2.7 Identifiers of used database objects

Here follows a list of all identifiers of Fib database objects, which are used in
the main-Fib-object or also in sub-root-objects. The storing of this identifiers is
optional. If identifiers are present, it can be tested from the outset, that all external
Fib objects from the database, that are needed, exists or whether it is likely that
display errors occur, since database objects are missing. Whether the identifier of
a Fib database object is given in the root-element in which main-Fib-object the
database object is needed or in a higher root-element, depends on several factors.
For the changing of the Fib objects, it is advantageous, that the identifier of a Fib
database object is given in a root-element, which is near the place of its use. For
storage space reasons in the compressed storage form it may be useful to store the
identifier of used database objects in as few as possible root-elements.

The name of the corresponding XML element for the database identifier is
database_identifier. It contains, for each specified database identifier, an
XML element named identifier. This XML element identifier in turn,
contains an (negative) integer for the used database identifier.

An example for the the identifiers of used database objects:

<database_identifier>
<identifier>-21</identifier>
<identifier>-632</identifier>

</database_identifier>

22.2.8 Checksum field

With this element a checksum for the root-element in the compressed storage for-
mat can be provided. For the Fib XML format, these information is irrelevant.

The checksum element is a property vector for a checksums, as described in
section 22.3.3 on page 129.

An example for the checksum element / vector:

<vector type="property.checksum">
<value>1</value>
<value>256</value>
<value>64</value>

</vector>

22.3 Fib elements

Each Fib element has its own XML element. Their layout will be described below.

127

22 XML FORMAT

22.3.1 Vectors

Vectors consist of several elements, each element being either a value or a variable.
The number of elements of the vector is either determined by the Fib element or an
associated domain (see section 9.14.2 on page 35).

All vector XML elements have the name vector. The vector element has
the attribute type, which indicates the type of vector (Example: position or
property.colorRGB). The vector element contains further for each element
of the vector an XML element. The XML element for vector elements, which are
values, has the name value. However, the XML element for vector elements,
which are variables, has the name variable. Both XML elements for vector
elements have the optional attribute number, which is the number (the counting
starts at 1) of the element in the vector. Furthermore, both contain the value of the
vector element. Where for the variables the variable identifier / number is given, as
it was defined in the definition of the variable.

An example for a vector:

<vector type="position">
<value>17</value>
<variable>3</variable>

</vector>

An example for a vector with the optional attribute number:

<vector type="position">
<variable number="1">5</variable>
<value number="2">3.9</value>

</vector>

22.3.2 Point

For the description of the point element see section 9.2 on page 6 .
A normal point element has the name point. A point without a position

vector (point()) has also the name point but contains no position vector. If the
point is for the entire background (point(()): point in which the position vector
has no elements), the name of the XML element is background.

Normal points included a position vector (see section 22.3.1). The number of
vector elements is determined by the number of dimensions (see section 22.2.3
on page 117) the number of possible values for each position vector element, is
determined by the domain of the dimension (see section 22.2.3 on page 120).

An example for a normal point:

<point>
<vector type="position">

128

22 XML FORMAT

<variable>2</variable>
<value>21</value>

</vector>
</point>

An example for a point with no impact respectively a point with no position vector:

<point/>

An example for a point with an empty position vector for the entire background:

<background/>

22.3.3 Properties

For the description of the property element see section 9.3 on page 7 .
The name of the property element is property. It contains a property vector

and a Fib object (its subobject).
The property vector has an attribute named type for the type of property. The

type is always "property." followed by the name of the property, as listed in
table 2 on page 12 .

An example for a property element:

<property>
<vector type="property.colorGrayscale">

<value>200</value>
<vector>
...<!-- Fib subobject -->

</property>

For the properties there are two special properties, that have influence on the decod-
ing of the Fib object in the compressed format. These properties are “checksum”
(see section 21.3.3 on page 104) and “boundSize” (see section 21.3.3 on page 105)
. For the XML format they have no significance, but serve only to hold the infor-
mation that they exists. The vector for the property “boundSize” has in this case 0
vector elements.

22.3.4 List element

For the description of the list element see section 9.4 on page 14 .
The name of the list element is list. It contains a number of subobjects that

are listed in their order. (The first element in the XML list element is for the first
subobject of the list element, etc. .)

An example for a list element:

129

22 XML FORMAT

<list>
<!-- 1. list subobject -->
<property>

<vector type="property.boundSize">
</vector>
...<!-- Fib subobject -->

</property>

<!-- 2. list subobject -->
<point>

<vector type="position">
<variable>1</variable>
<variable>2</variable>

</vector>
</point>

<!-- 3. list subobject -->
<point>

<vector type="position">
<variable>52</variable>
<value>36</value>

</vector>
</point>

</list>

22.3.5 Comment element

For the description of the comment element see section 9.5 on page 14 .
The comment element has the name comment. It has two attributes key and

value. The attribute key is the key of the comment element and the attribute
value the value. Instead of using the attribute value the value of the comment
element can be stored in a XML element named value as the text. Furthermore,
the comment element contains a Fib object (its subobject).

An example for a comment element:

<comment key="name" value="Mr X">
...<!-- Fib subobject -->

</comment>

An example for a comment element with a value XML element:

<comment key="description">
<value>

130

22 XML FORMAT

This is a long text
line 2

</value>
...<!-- Fib subobject -->

</comment>

22.3.6 Area element

For the description of the area element see section 9.6 on page 16 .
The name of the area XML element is area. The area XML element has an

attribute defined_variable. The attribute defined_variable indicates,
which variable is defined by the area element. It is a natural number for a variable,
that is not used above the area element for another variable.

The area element also contains for each of its subareas a vector of the type
subarea. Wherein the first subarea is the first XML element, then comes the
second etc. .

After the subareas follows the XML element for the contained subobject.

An example for a area element:

<area defined_variable="1">
<vector type="subarea">

<value>4</value>
<value>10</value>

</vector>
<vector type="subarea">

<value>15</value>
<value>19</value>

</vector>
...<!-- Fib subobject -->

</area>

22.3.7 Function

For the description of the function element see section 9.7 on page 17 .
The name of the function XML element is function. The function XML ele-

ment has an attribute defined_variable. The attribute defined_variable
indicates, which variable is defined by the function element. It is a natural number
for a variable, that is not used above the function element for another variable.

Furthermore, the function element contains a subfunction element (this is de-
scribed in subsection 22.3.7), which is contained in a separate XML element named
subfunction.

After the subfunction element follows the XML element for the contained sub-
object.

131

22 XML FORMAT

An example for a function element:

<function defined_variable="2">
<subfunction>

<add>
<value>4</value>
<div>

<variable>1</variable>
<value>3.14</value>

</div>
</add>

</subfunction>
...<!-- Fib subobject -->

</function>

Subfunction
The XML elements for subfunctions for variables and values (see section 9.7.1 on
page 18) have the names:

• value: value

• variable: variable

They contain a number each. Where the variable subfunction (variable) con-
tains the value of the number / identifier of the variable, as it is defined above.

Furthermore, there are real subfunctions (see section 9.7.2 on page 18). These
contain for each of ther subfunction a XML element.

Names of subfunctions with an arity of one are:

• abs: absolute value

• sin: sine

• arcsin: arc sine

• log: logarithm

• round: round

• delay: delay

Names of subfunctions with an arity of two are:

• add: addition

• sub: subtraction

132

22 XML FORMAT

• mult: multiplication

• div: division

• mod: modulo

• exp: exponent

• min: minimum

• max: maximum

In the sub, div and exp subfunctions the the sequence of the contained XML el-
ements is important. In them the first contained XML element is the first contained
subfunction of the subfunction.

Other subfunctions:

• if: if-function (before its two subfunctions, first the condition of the if-
subfunction is stored, the order of the XML subelements is: condition, true
case (subfunction), false case (subfunction); see section 22.3.8 on page 133)

22.3.8 if-element

For the description of the if-element see section 9.8 on page 24 .
The name of the XML if-element is if.
The element contains a condition element condition (this is described in

subsection 22.3.8).
After the condition element follow two XML elements for the contained sub-

objects. The first XML element is evaluated when the condition is true, and the
second otherwise (if the condition is false).

An example for an if-element:

<if>
<condition>

<and>
<true/>
<lo>

<variable>1</variable>
<value>3.14</value>

</lo>
</and>

</condition>
...<!-- Fib subobject,
if the condition is true -->

...<!-- Fib subobject,
if the condition is false -->

</if>

133

22 XML FORMAT

Conditions Conditions contain either XML elements for 0 to 2 subconditions
(respectively conditions) or XML elements for two subfunctions (see section 22.3.7
on page 132).

The possible conditions for XML elements are listed in table 17.

element
name

description contained XML elements

false The condition is false. non
true The condition is true. non
not The condition is true if and only if the

subcondition is false, otherwise it is
false.

one subcondition

or The condition is true if and only if at
least one of its subconditions is true,
otherwise it is false.

two subconditions

and The condition is true if and only if both
of its subconditions are true, otherwise
it is false.

two subconditions

xor The condition is true if and only if ex-
actly one of its two subconditions is
true, otherwise it is false.

two subconditions

eqInt Comparison of two to integers rounded
numbers on equality. (for rounding see
section 9.6 on page 16)

two subfunctions, as de-
scribed in section 21.3.7
on page 107

lo Comparison, if the first number is less
than the second.

two subfunctions, as de-
scribed in section 21.3.7
on page 107

gr Comparison, if the first number is
greater than the second.

two subfunctions, as de-
scribed in section 21.3.7
on page 107

Table 17: XML element names for conditions

22.3.9 External object element

For the description of the external object element see section 9.9 on page 25 .
The XML element for external object has the name obj. It has one attribute

named identifier, which indicates the identifier of the external object to be
used. Moreover an obj XML element contains an XML element for the input
variables and an XML element for each Fib subobject that can be used by the
external object.

The corresponding XML element for the input values is a vector (see section
22.3.1 on page 128) with the type externObjectInput (<vector type=

134

22 XML FORMAT

"externObjectInput">), it contains the input values.
A XML element for a subobject has the name subobject. The subobject

XML element has the optional attribute number, which specifies the number
(counting begins at 1) of the subobject. Furthermore the subobject XML el-
ement contains an XML element for the output variables of the external object and
an XML element for the Fib subobject, which is a normal Fib object, as described
in this section 22.3 .

The corresponding XML element for the output variable has the element named
output_variables. It keeps for each output variable one XML element named
variable. The variable XML element has an optional attribute number,
which indicates the number (counting begins at 1) of the output variable. Further-
more the variable XML element contains a value for the number / identifier of
the defined variable.

An example for a external object element:

<obj identifier="123">
<vector type="externObjectInput">

<value>5</value>
<variable>1</variable>
<variable>3</variable>

</vector>
<subobject>

<output_variables>
<variable>6</variable>
<variable>7</variable>
<variable>8</variable>
<variable>9</variable>

</output_variables>
...<!-- Fib subobject number 1 -->

</subobject>
<subobject>

<output_variables/>
...<!-- Fib subobject number 2 -->

</subobject>
<subobject>

<output_variables>
<variable>6</variable>
<variable>7</variable>

</output_variables>
...<!-- Fib subobject number 3 -->

</subobject>
</obj>

An example for a external object element with the optional attribute number:

135

22 XML FORMAT

<obj identifier="34">
<vector type="externObjectInput">

<variable number="1">2</variable>
<value number="2">3.7</value>
<variable number="3">5</variable>

</vector>
<subobject number="1">

<output_variables>
<variable number="1">6</variable>
<variable number="2">7</variable>
<variable number="3">8</variable>

</output_variables>
...<!-- Fib subobject number 1 -->

</subobject>
<subobject number="2">

<output_variables>
<variable number="1">6</variable>
<variable number="2">7</variable>

</output_variables>
...<!-- Fib subobject number 2 -->

</subobject>
</obj>

22.3.10 External subobject

For the description of the external subobject element see section 9.10 on page 26 .
The XML element for an external subobject has the name subobject. It has

an attribute named number, which indicates the number of external subobject,
which is to be used for it. Furthermore the subobject XML element contains
an XML element for its output variables.

The corresponding XML element for the output values is a vector (see sec-
tion 22.3.1 on page 128) with the type externSubobject (<vector type=
"externSubobject">), it contains the output values.

An example for a external subobject element:

<subobject number="6">
<vector type="externSubobject">

<value>5</value>
<variable>7</variable>

</vector>
</subobject>

An example for a external subobject element with the optional attribute number:

136

22 XML FORMAT

<subobject number="2">
<vector type="externSubobject">

<variable number="1">2</variable>
<value number="2">3.7</value>
<variable number="3">5</variable>

</vector>
</subobject>

22.3.11 Retrieve domain properties

For the description of the Fib element to retrieve domain properties see section
9.11 on page 27 .

The XML element for the Fib element to retrieve domain properties has the
name domainProperty. The XML element has two till tree attributes. The
first attribute has the name defined_variable and specifies which variable is
defined by the Fib element to retrieve domain properties. It is a natural number for
a variable, that is not used above the Fib element to retrieve domain properties for
another variable.

If the domain is a vector domain and thus contains multiple subdomains, there
is an attribute subdomain. The attribute subdomain specifies the subdomain
which should be used. In it the numbers (counting starts with 1) of the subdomains
to use is stored. Subdomains of more levels can be given separated by a point
betwean them. In which the number of a subdomain stands befor the number of
the subdomains contained in it.

The attribute mode specifies the type of the property, which should be returned.
The value of this attribute comes from the “name” column of the table 4 on page
29 .

The Fib element to retrieve domain properties contains two XML elements.
The first is for the used type of the Fib element, for which the domain is to

which the Fib element to retrieve domain properties refers to. It has the name
type and contains the XML element for the type. This XML element is generated
as described in table 15 on page 120 .

The Fib element to retrieve domain properties contains also the XML element
for the contained subobject.

An example for a Fib element to retrieve domain properties:

<domainProperty defined_variable="3" subdomain="2"
mode="unscaled max">

<type>
<dim count="2">

<dimension number="1" direction="horizontal"/>
<dimension number="2" direction="vertical"/>

</dim>

137

22 XML FORMAT

</type>
...<!-- Fib subobject -->

</subobject>

Example wher the used domain is the first subdomain of the third subdoamin of
the matrix element:

<domainProperty defined_variable="1" subdomain="3.1"
mode="unscaled min">

<type>
<matrixElement/>

</type>
...<!-- Fib subobject -->

</subobject>

Example without subdomains:

<domainProperty defined_variable="14" mode="scaling">
<type>

<inVar number="4"/>
</type>
...<!-- Fib subobject -->

</subobject>

22.3.12 Set-element

For the description of the set-element see section 9.12 on page 30 .
The name of the set-XML element is set. It has an optional attribute named

domainNr, which specifies the number of the domain for the set-element. If the
attribute domainNr is missing, the domain number is 0 .

The element contains first a XML element named defined_variables,
wich contains for each variable, which the set-element defines, in their order, a
variable element. These have the optinal attribute number, which is the num-
ber (counting begins at 1) of the element respectively variable defined in the set-
element. Furthermore the variable element contains a natural number for the
variable, that is not used above the set-element for another variable.

After the XML element for variable definitions defined_variables fol-
lows the XML element named values, wich contains the vectors with the values,
to which the variables should be set. They are listed in their order in the set-
element. The vectors all have the type set (type="set").

At the end, after the XML element for values vectors values, the set-element
contains the XML element for the contained the subobject.

An example for a set-element:

138

22 XML FORMAT

<set>
<defined_variables>

<variable>7</variable>
<variable>8</variable>
<variable>9</variable>

</defined_variables>
<values>

<vector type="set">
<variable>1</variable>
<value>3</value>
<value>26.14</value>

</vector>
<vector type="set">

<value>33.4</value>
<value>-47</value>
<variable>4</variable>

</vector>
</values>

...<!-- Fib subobject -->
</set>

An example for a set-element with the optional attribute domainNr and number:

<set domainNr="5">
<defined_variables>

<variable number="1">2</variable>
<variable number="2">3</variable>
<variable number="3">4</variable>
<variable number="4">5</variable>

</defined_variables>
<values>

<vector type="set">
<variable>1</variable>
<variable>1</variable>
<variable>1</variable>
<variable>1</variable>

</vector>
<vector type="set">

<value>8</value>
<value>4</value>
<variable>1</variable>
<value>3</value>

</vector>
</values>

139

22 XML FORMAT

...<!-- Fib subobject -->
</set>

22.3.13 Matrix element

For the description of the matrix element see section 9.13 on page 31 .
The name of the XML element is matrix. It has the attribute dimensions,

which indicates how many dimensions d the matrix element has. Furthermore it
has an optional attribute named domainNr, which specifies the number of the
domain for the matrix element. If the attribute domainNr is missing, the domain
number is 0 .

The element contains first a XML element named defined_variables,
wich contains for each variable, which the matrix element defines, in their order
a variable element. These have the optional attribute number, which is the
number (counting begins at 1) of the element respectively variable defined in the
matrix element. Furthermore the variable element contains a natural number
/ identifier for the variable, that is not used above the matrix element for another
variable.

After the XML element for variable definitions defined_variables fol-
lows the XML element named areas, wich contains the vectors with the areas
for the dimension ((Startvaluek, . . . , Endvaluek) with k = 1 . . . d), to which
the dimension variables (V ariable1, . . . , V ariabled) should be set to. They are
listed in their order in the matrix element. The vectors all have the type area
(type="area").

After the XML element for the areas areas follows the XML element named
values, wich contains the vectors with the values (V alued+1, . . . , V alued+i),
to which the variables should be set. They are listed in their order in the matrix
element. The vectors all have the type matrix (type="matrix").

At the end, after the XML element for the values vectors values, the matrix
element contains the XML element for the contained subobject.

An example for a matrix element:

<matrix dimensions="2">
<defined_variables>

<variable>7</variable>
<variable>8</variable>
<variable>9</variable>
<variable>10</variable>
<variable>11</variable>

</defined_variables>
<areas>

<vector type="area">

140

22 XML FORMAT

<value>3</value>
<value>4</value>

</vector>
<vector type="area">

<variable>2</variable>
<value>7</value>

</vector>
</areas>
<values>

<vector type="matrix">
<variable>1</variable>
<value>3</value>
<value>26.14</value>

</vector>
<vector type="matrix">

<value>33.4</value>
<value>-47</value>
<variable>4</variable>

</vector>
</values>
...
...<!-- Fib subobject -->

</matrix>

An example for a matrix element with the optional attribute domainNr and number:

<matrix dimensions="2" domainNr="7">
<defined_variables>

<variable number="1">8</variable>
<variable number="2">9</variable>
<variable number="3">10</variable>
<variable number="4">11</variable>

</defined_variables>
<areas>

<vector type="area">
<variable>3</variable>
<variable>2</variable>

</vector>
<vector type="area">

<value>-2</value>
<value>0</value>

</vector>
</areas>
<values>

<vector type="matrix">

141

22 XML FORMAT

<value>3</value>
<variable>1</variable>

</vector>
<vector type="matrix">

<value>0.44</value>
<value>-7</value>

</vector>
<vector type="matrix">

<value>6</value>
<value>5</value>

</vector>
<vector type="matrix">

<value>-1</value>
<value>-1</value>

</vector>
</values>
...
...<!-- Fib subobject -->

</matrix>

142

Part V

Project structur of the implementation
The project is organized into different modules. These modules are intended to
be (as far as possible) separate entities, their relationship to each other is clearly
defined.

Each module has its own namespace.
These modules are (the names of the namespaces are given in front, before the
colon):

• “fib”: the Fib multimedia language (see section II on page 4 for the descrip-
tion)

• “enviroment”: the general genetic algorithm (see section III on page 71 for
the description)

• “operator”: operators for the general genetic algorithm

• “enviroment.fib”: the genetic algorithm for Fib

• “fib.operator”: operators for the genetic algorithm for Fib

• “fib.algorithm”: algorithms for processing Fib objects (currently no designs
available)

• “fib.converter”: converters to convert objects to and from the Fib multimedia
language

• “fib.player”: A player for Fib multimedia objects (currently no designs avail-
able)

23 Dependencies of the modules

In figure 9 the dependencies of the modules is shown. The inheritance arrows
between the “enviroment” and “enviroment.fib” as well as the “operation” and
“fib.operator” modules are used, to represent that the corresponding Fib modules
are specializations of the “enviroment” or the “operator” module.

The figure 10 shows the dependencies of the main modules again in a different
graphically form.

The “enviroment.fib” module requires for its individuals the Fib objects, but
only as a name (for Fib objects). The “enviroment.fib” module thus only needs
one name for Fib objects and no knowledge of the functionality (methods) of the
Fib objects. Therefore the “enviroment.fib” module is not dependent on the “fib”
module.

143

23 DEPENDENCIES OF THE MODULES

fib

enviroment

operator

enviroment.fib

uses

fib.operatorfib.algorithm

fib.converter fib.player

uses

uses

uses

uses

uses

uses

Figure 9: Dependencies of the modules

Figure 10: Dependencies of the main modules

144

Part VI

Appendix
24 GNU GENERAL PUBLIC LICENSE

In the following the english original text of the GPL (GNU GENERAL PUBLIC
LICENSE) is listed.

This text was taken from the GNU website www.gnu.org and adapted for
this document layout.

24.1 “GNU GENERAL PUBLIC LICENSE”

Date: Version 3, 29 June 2007

Copyright c⃝ 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software
and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast, the
GNU General Public License is intended to guarantee your freedom to share
and change all versions of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation, use the GNU General
Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for them if you
wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you
know you can do these things.

To protect your rights, we need to prevent others from denying you these
rights or asking you to surrender the rights. Therefore, you have certain
responsibilities if you distribute copies of the software, or if you modify it:
responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must pass on to the recipients the same freedoms that you
received. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1)
assert copyright on the software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify it.

145

24 GNU GENERAL PUBLIC LICENSE

For the developers’ and authors’ protection, the GPL clearly explains that
there is no warranty for this free software. For both users’ and authors’ sake,
the GPL requires that modified versions be marked as changed, so that their
problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified
versions of the software inside them, although the manufacturer can do so.
This is fundamentally incompatible with the aim of protecting users’ free-
dom to change the software. The systematic pattern of such abuse occurs
in the area of products for individuals to use, which is precisely where it is
most unacceptable. Therefore, we have designed this version of the GPL to
prohibit the practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those domains
in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on
general-purpose computers, but in those that do, we wish to avoid the spe-
cial danger that patents applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that patents cannot be used to
render the program non-free.

The precise terms and conditions for copying, distribution and modifica-
tion follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License.
Each licensee is addressed as “you”. “Licensees” and “recipients” may be
individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in
a fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a “modified version” of the earlier work
or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on
the Program.

To “propagate” a work means to do anything with it that, without permis-
sion, would make you directly or secondarily liable for infringement under
applicable copyright law, except executing it on a computer or modifying
a private copy. Propagation includes copying, distribution (with or without
modification), making available to the public, and in some countries other
activities as well.

146

24 GNU GENERAL PUBLIC LICENSE

To “convey” a work means any kind of propagation that enables other parties
to make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
extent that it includes a convenient and prominently visible feature that (1)
displays an appropriate copyright notice, and (2) tells the user that there is
no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a
copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that either is an official standard
defined by a recognized standards body, or, in the case of interfaces speci-
fied for a particular programming language, one that is widely used among
developers working in that language.

The “System Libraries” of an executable work include anything, other than
the work as a whole, that (a) is included in the normal form of packaging
a Major Component, but which is not part of that Major Component, and
(b) serves only to enable use of the work with that Major Component, or
to implement a Standard Interface for which an implementation is available
to the public in source code form. A “Major Component”, in this context,
means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or
a compiler used to produce the work, or an object code interpreter used to
run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run
the object code and to modify the work, including scripts to control those
activities. However, it does not include the work’s System Libraries, or
general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the work.
For example, Corresponding Source includes interface definition files asso-
ciated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed
to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regen-
erate automatically from other parts of the Corresponding Source.

147

24 GNU GENERAL PUBLIC LICENSE

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright
on the Program, and are irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited permission to run the unmod-
ified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided
by copyright law.

You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force. You
may convey covered works to others for the sole purpose of having them
make modifications exclusively for you, or provide you with facilities for
running those works, provided that you comply with the terms of this License
in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the con-
ditions stated below. Sublicensing is not allowed; section 10 makes it unnec-
essary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid cir-
cumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you re-
ceive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice; keep intact all notices
stating that this License and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices of the absence of any war-
ranty; and give all recipients a copy of this License along with the Program.

148

24 GNU GENERAL PUBLIC LICENSE

You may charge any price or no price for each copy that you convey, and you
may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to pro-
duce it from the Program, in the form of source code under the terms of
section 4, provided that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it,
and giving a relevant date.

(b) The work must carry prominent notices stating that it is released under
this License and any conditions added under section 7. This require-
ment modifies the requirement in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will there-
fore apply, along with any applicable section 7 additional terms, to the
whole of the work, and all its parts, regardless of how they are pack-
aged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately
received it.

(d) If the work has interactive user interfaces, each must display Appropri-
ate Legal Notices; however, if the Program has interactive interfaces
that do not display Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other separate and independent works,
which are not by their nature extensions of the covered work, and which are
not combined with it such as to form a larger program, in or on a volume of
a storage or distribution medium, is called an “aggregate” if the compilation
and its resulting copyright are not used to limit the access or legal rights of
the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the
other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable Corre-
sponding Source under the terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (includ-
ing a physical distribution medium), accompanied by the Correspond-
ing Source fixed on a durable physical medium customarily used for
software interchange.

149

24 GNU GENERAL PUBLIC LICENSE

(b) Convey the object code in, or embodied in, a physical product (includ-
ing a physical distribution medium), accompanied by a written offer,
valid for at least three years and valid for as long as you offer spare
parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source
for all the software in the product that is covered by this License, on
a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically perform-
ing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is allowed
only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the Correspond-
ing Source in the same way through the same place at no further charge.
You need not require recipients to copy the Corresponding Source along
with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (oper-
ated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying
where to find the Corresponding Source. Regardless of what server
hosts the Corresponding Source, you remain obligated to ensure that it
is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source
of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded from
the Corresponding Source as a System Library, need not be included in con-
veying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family, or
household purposes, or (2) anything designed or sold for incorporation into
a dwelling. In determining whether a product is a consumer product, doubt-
ful cases shall be resolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to a typical or common
use of that class of product, regardless of the status of the particular user or of
the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the
product has substantial commercial, industrial or non-consumer uses, unless

150

24 GNU GENERAL PUBLIC LICENSE

such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, proce-
dures, authorization keys, or other information required to install and execute
modified versions of a covered work in that User Product from a modified
version of its Corresponding Source. The information must suffice to en-
sure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifi-
cally for use in, a User Product, and the conveying occurs as part of a trans-
action in which the right of possession and use of the User Product is trans-
ferred to the recipient in perpetuity or for a fixed term (regardless of how the
transaction is characterized), the Corresponding Source conveyed under this
section must be accompanied by the Installation Information. But this re-
quirement does not apply if neither you nor any third party retains the ability
to install modified object code on the User Product (for example, the work
has been installed in ROM).

The requirement to provide Installation Information does not include a re-
quirement to continue to provide support service, warranty, or updates for
a work that has been modified or installed by the recipient, or for the User
Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communica-
tion across the network.

Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented (and
with an implementation available to the public in source code form), and
must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License
by making exceptions from one or more of its conditions. Additional per-
missions that are applicable to the entire Program shall be treated as though
they were included in this License, to the extent that they are valid under ap-
plicable law. If additional permissions apply only to part of the Program, that
part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permis-
sions.

When you convey a copy of a covered work, you may at your option remove
any additional permissions from that copy, or from any part of it. (Addi-
tional permissions may be written to require their own removal in certain
cases when you modify the work.) You may place additional permissions on

151

24 GNU GENERAL PUBLIC LICENSE

material, added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add
to a covered work, you may (if authorized by the copyright holders of that
material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices dis-
played by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring
that modified versions of such material be marked in reasonable ways
as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or authors
of the material; or

(e) Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with con-
tractual assumptions of liability to the recipient, for any liability that
these contractual assumptions directly impose on those licensors and
authors.

All other non-permissive additional terms are considered “further restric-
tions” within the meaning of section 10. If the Program as you received it,
or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term.
If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must
place, in the relevant source files, a statement of the additional terms that
apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of
a separately written license, or stated as exceptions; the above requirements
apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly pro-
vided under this License. Any attempt otherwise to propagate or modify

152

24 GNU GENERAL PUBLIC LICENSE

it is void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section
11).

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some rea-
sonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy
of the Program. Ancillary propagation of a covered work occurring solely as
a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License
to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,
subject to this License. You are not responsible for enforcing compliance by
third parties with this License.

An “entity transaction” is a transaction transferring control of an organiza-
tion, or substantially all assets of one, or subdividing an organization, or
merging organizations. If propagation of a covered work results from an
entity transaction, each party to that transaction who receives a copy of the
work also receives whatever licenses to the work the party’s predecessor in
interest had or could give under the previous paragraph, plus a right to pos-
session of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose a

153

24 GNU GENERAL PUBLIC LICENSE

license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or coun-
terclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of
it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License
of the Program or a work on which the Program is based. The work thus
licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or con-
trolled by the contributor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permitted by this License, of mak-
ing, using, or selling its contributor version, but do not include claims that
would be infringed only as a consequence of further modification of the con-
tributor version. For purposes of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use, sell,
offer for sale, import and otherwise run, modify and propagate the contents
of its contributor version.

In the following three paragraphs, a “patent license” is any express agree-
ment or commitment, however denominated, not to enforce a patent (such as
an express permission to practice a patent or covenant not to sue for patent
infringement). To “grant” such a patent license to a party means to make
such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and
the Corresponding Source of the work is not available for anyone to copy,
free of charge and under the terms of this License, through a publicly avail-
able network server or other readily accessible means, then you must either
(1) cause the Corresponding Source to be so available, or (2) arrange to de-
prive yourself of the benefit of the patent license for this particular work, or
(3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your con-
veying the covered work in a country, or your recipient’s use of the covered
work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and
grant a patent license to some of the parties receiving the covered work au-

154

24 GNU GENERAL PUBLIC LICENSE

thorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of
its coverage, prohibits the exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with
a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of con-
veying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent li-
cense (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work, unless you
entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting any im-
plied license or other defenses to infringement that may otherwise be avail-
able to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or oth-
erwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot convey a covered work
so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at
all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only
way you could satisfy both those terms and this License would be to refrain
entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission
to link or combine any covered work with a work licensed under version
3 of the GNU Affero General Public License into a single combined work,
and to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will

155

24 GNU GENERAL PUBLIC LICENSE

be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies that a certain numbered version of the GNU General Public License “or
any later version” applies to it, you have the option of following the terms
and conditions either of that numbered version or of any later version pub-
lished by the Free Software Foundation. If the Program does not specify a
version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the
GNU General Public License can be used, that proxy’s public statement of
acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions. How-
ever, no additional obligations are imposed on any author or copyright holder
as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUD-
ING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OP-
ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

156

24 GNU GENERAL PUBLIC LICENSE

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot
be given local legal effect according to their terms, reviewing courts shall
apply local law that most closely approximates an absolute waiver of all civil
liability in connection with the Program, unless a warranty or assumption of
liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively state the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like
this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

157

25 GNU LESSER GENERAL PUBLIC LICENSE

The hypothetical commands show w and show c should show the appro-
priate parts of the General Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you would use an “about
box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General Public
License instead of this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

25 GNU LESSER GENERAL PUBLIC LICENSE

In the following the english original text of the LGPL (GNU LESSER GENERAL
PUBLIC LICENSE) is listed.

This text was taken from the GNU website www.gnu.org and adapted for
this document layout.

25.1 “GNU LESSER GENERAL PUBLIC LICENSE”

Date: Version 3, 29 June 2007

Copyright c⃝ 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented by
the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General
Public License, and the “GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by this License, other than
an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by
the Library, but which is not otherwise based on the Library. Defining a

158

25 GNU LESSER GENERAL PUBLIC LICENSE

subclass of a class defined by the Library is deemed a mode of using an
interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Appli-
cation with the Library. The particular version of the Library with which the
Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Cor-
responding Source for the Combined Work, excluding any source code for
portions of the Combined Work that, considered in isolation, are based on
the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data and
utility programs needed for reproducing the Combined Work from the Ap-
plication, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License with-
out being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility
refers to a function or data to be supplied by an Application that uses the
facility (other than as an argument passed when the facility is invoked), then
you may convey a copy of the modified version:

(a) under this License, provided that you make a good faith effort to ensure
that, in the event an Application does not supply the function or data,
the facility still operates, and performs whatever part of its purpose
remains meaningful, or

(b) under the GNU GPL, with none of the additional permissions of this
License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a
header file that is part of the Library. You may convey such object code
under terms of your choice, provided that, if the incorporated material is
not limited to numerical parameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten or fewer lines in length),
you do both of the following:

(a) Give prominent notice with each copy of the object code that the Li-
brary is used in it and that the Library and its use are covered by this
License.

159

25 GNU LESSER GENERAL PUBLIC LICENSE

(b) Accompany the object code with a copy of the GNU GPL and this
license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken
together, effectively do not restrict modification of the portions of the Library
contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

(a) Give prominent notice with each copy of the Combined Work that the
Library is used in it and that the Library and its use are covered by this
License.

(b) Accompany the Combined Work with a copy of the GNU GPL and this
license document.

(c) For a Combined Work that displays copyright notices during execution,
include the copyright notice for the Library among these notices, as
well as a reference directing the user to the copies of the GNU GPL
and this license document.

(d) Do one of the following:

. Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form suit-
able for, and under terms that permit, the user to recombine or re-
link the Application with a modified version of the Linked Version
to produce a modified Combined Work, in the manner specified by
section 6 of the GNU GPL for conveying Corresponding Source.

i. Use a suitable shared library mechanism for linking with the Li-
brary. A suitable mechanism is one that (a) uses at run time a copy
of the Library already present on the user’s computer system, and
(b) will operate properly with a modified version of the Library
that is interface-compatible with the Linked Version.

(e) Provide Installation Information, but only if you would otherwise be
required to provide such information under section 6 of the GNU GPL,
and only to the extent that such information is necessary to install and
execute a modified version of the Combined Work produced by re-
combining or relinking the Application with a modified version of the
Linked Version. (If you use option 4d0, the Installation Information
must accompany the Minimal Corresponding Source and Correspond-
ing Application Code. If you use option 4d1, you must provide the In-
stallation Information in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

160

26 GNU FREE DOCUMENTATION LICENSE

You may place library facilities that are a work based on the Library side by
side in a single library together with other library facilities that are not Ap-
plications and are not covered by this License, and convey such a combined
library under terms of your choice, if you do both of the following:

(a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities, conveyed
under the terms of this License.

(b) Give prominent notice with the combined library that part of it is a work
based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of
the GNU Lesser General Public License from time to time. Such new ver-
sions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you
received it specifies that a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that published version or of any
later version published by the Free Software Foundation. If the Library as
you received it does not specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of the GNU Lesser General
Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether
future versions of the GNU Lesser General Public License shall apply, that
proxy’s public statement of acceptance of any version is permanent autho-
rization for you to choose that version for the Library.

26 GNU Free Documentation License

This section lists the english original text of the "‘GNU Free Documentation Li-
cense"’.

This text was taken from the GNU website www.gnu.org and adapted for
this document layout.

26.1 “GNU Free Documentation License”

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

161

26 GNU FREE DOCUMENTATION LICENSE

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted
to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "‘free"’ in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "‘copyleft"’, which means that derivative works of
the document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "‘Document"’,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "‘you"’. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Docu-
ment or a portion of it, either copied verbatim, or with modifications and/or trans-
lated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and con-
tains nothing that could fall directly within that overall subject. (Thus, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The "‘Invariant Sections"’ are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the Docu-

162

26 GNU FREE DOCUMENTATION LICENSE

ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "‘Cover Texts"’ are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "‘Transparent"’ copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "‘Transparent"’ is called "‘Opaque"’.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The "‘Title Page"’ means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, "‘Title Page"’ means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "‘Entitled XYZ"’ means a named subunit of the Document whose ti-
tle either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name men-
tioned below, such as "‘Acknowledgements"’, "‘Dedications"’, "‘Endorsements"’,
or "‘History"’.) To "‘Preserve the Title"’ of such a section when you modify the
Document means that it remains a section "‘Entitled XYZ"’ according to this defi-
nition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards dis-
claiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

163

26 GNU FREE DOCUMENTATION LICENSE

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license no-
tice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on
the covers in addition.

Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

MODIFICATIONS

164

26 GNU FREE DOCUMENTATION LICENSE

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "‘History"’, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "‘History"’
in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public ac-
cess to a Transparent copy of the Document, and likewise the network loca-
tions given in the Document for previous versions it was based on. These

165

26 GNU FREE DOCUMENTATION LICENSE

may be placed in the "‘History"’ section. You may omit a network location
for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "‘Acknowledgements"’ or "‘Dedications"’, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled "‘Endorsements"’. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled "‘Endorsements"’ or to con-
flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "‘Endorsements"’, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that

166

26 GNU FREE DOCUMENTATION LICENSE

you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are mul-
tiple Invariant Sections with the same name but different contents, make the title
of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "‘History"’ in
the various original documents, forming one section Entitled "‘History"’; likewise
combine any sections Entitled "‘Acknowledgements"’, and any sections Entitled
"‘Dedications"’. You must delete all sections Entitled "‘Endorsements"’.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
is called an "‘aggregate"’ if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

TRANSLATION

167

26 GNU FREE DOCUMENTATION LICENSE

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original ver-
sions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "‘Acknowledgements"’, "‘Dedica-
tions"’, or "‘History"’, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "’or any later
version"’ applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright (c) YEAR YOUR NAME.

168

26 GNU FREE DOCUMENTATION LICENSE

Permission is granted to copy, distribute
and/or modify this document under the
terms of the GNU Free Documentation License,
Version 1.2 or any later version published
by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the
license is included in the section entitled
"‘GNU Free Documentation License"’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the "‘with...Texts."’ line with this:

with the Invariant Sections being LIST
THEIR TITLES, with the Front-Cover
Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free soft-
ware.

169

REFERENCES

References

[1] Genetic programming for feature discovery and image discrimina-
tion walter alden tackett, http://citeseer.ist.psu.edu/
tackett93genetic.html.

[2] Genetische und evolutionÃd’re algorithmen, http://www.
bwl.uni-mannheim.de/Heinzl/de/downloads/
ki-kapitel-4-6.pdf, WS 2002/03.

[3] Heinz Bauer, Wahrscheinlichkeitstheorie, 4 ed., New York, 1991.

[4] Erhard Behrends, ÃIJberall zufall: Eine einfÃijhrung in die wahrschein-
lichkeitsrechnung, Mannheim, 1994.

[5] W.D. Cannon, The wisdom of the body, W.W. Norton, New York, 1932.

[6] Charles Darwin, Die entstehung der arten, Nikol, 1963.

[7] David B. Fogel, Evolutionary computation - the fossil record, New York,
1998.

[8] , Evolutionary computation: toward a new philosophy of machine
intelligence - 2nd ed., Institute of Electrical and Electronics Engineers, 2000.

[9] GÃijnther GÃűrz, Claus-Rainer Rollinger, and Josef Schneeberger, Hand-
buch der kÃijnstlichen intelligenz, 4 ed., Oldenbourg Verlag MÃijnchen
Wien, Oldenbourg Wissenschaftsverlag GmbH; Rosenheimer Str. 145; D-
81671 MÃijnchen, 2003.

[10] JÃűrg HeitkÃűtter and David Beasley, The hitch-hiker’s guide to evolutionary
computation, http://surf.de.uu.net/hhg2ec/.

[11] John H. Holland, Genetic programming, 4 ed.

[12] Marc W. Kirscher and John C. Gerhart, Die lÃűsung von darwins dilemma,
Rowohlt Taschenbuch Verlag, 2007.

[13] Steve McConnell, Code complete, 2 ed., Microsoft Press Deutschland, 2004.

[14] Zbigniew Michalewicz, Genocop – optimization via genetic algo-
rithms, http://www.cs.sunysb.edu/~algorith/implement/
genocop/implement.shtml.

[15] , Genetic algorithms + data structures = evolution programs, third
revision ed., Springer, 1996.

[16] Kurt Nawrotzki, Lehrbuch der stochastik: eine einfÃijhrung in die
wahrscheinlichkeitstheorie und die mathematische statistik, Harri Deutsche,
1994.

170

REFERENCES

[17] A. Nischwitz, M. Fischer, and P. HaberÃd’cker, Computergrafik und bildver-
arbeitung, 2 ed., Friedr. Vieweg und Sohn Verlag; GWV Fachverlag GmbH,
Wiesbaden 2007, 2007.

[18] Paula Pfiester, Nina Tretter, Tina KoppenhÃűfer, Matthias Ecker, and Projek-
tbetreuerin Annett Steiner, Projekt bildformate, http://www.scheib.
info/downloads/Projekt_Bildformate.pdf, 10.2001-2.2002.

[19] David Poole, Alan Mackworth, and Randy Goebel, Computational intelli-
gence: a logical approach, Oxford University Press, 1998.

[20] Roger S. Pressman, Software engineering - a practitioner’s approach, 6 ed.,
McGraw-Hill, 2005.

[21] Stuart Russell and Peter Norvig, Artificial intelligence: A modern approach,
2nd edition ed., Prentice-Hall, Englewood Cliffs, NJ, 2003.

[22] Herbert Schildt, C++ die professionelle referenz, 1 ed., Osborne/McGraw-
Hill, 2004.

[23] Friedrich Schmid and Mark Trede, Skript zur vorlesung: EinfÃijhrung
in die stochastik der finanzmÃd’rkte: Stochastische prozesse, simulation
und anwendungen, http://www.wiwi.uni-muenster.de/~05/
hauptstudium/vorlesungen/stofin/stofin.pdf, SS 2000.

[24] Andrew S. Tanenbaum and Maarten van Steen, Verteilte systeme, 1 ed., Pear-
son Education Deutschland GmbH, 2003.

[25] Astro Teller and Manuela Veloso, Algorithm evolution for face recogni-
tion: What makes a picture difficult, http://www.cs.cmu.edu/~mmv/
papers/tellerICEC95.pdf.

[26] Astro Teller and Manuela M. Veloso, A controlled experiment: Evolution
for learning difficult image classification, Proceedings of the Seventh Por-
tuguese Conference on Artificial Intelligence, Springer Verlag, October 1995,
pp. 165–176.

[27] A.M. Turing, Computing machinery and intelligence, Mind 59 (1950).

[28] Thomas Wieland, C++ entwicklung mit linux, dpunkt.verlag, 2001.

171

Index

algorithm, 71
social aspect, 76

area element, 16–17, 107, 131

checksum, 83, 85, 104, 127
comment element, 14–16, 106, 130–131
compressing, 80
condition, 24, 109–111, 134
core algorithm, 71

database
used identifiers, 84, 101, 127

domain properties, 27–28, 112, 137–138
Domains

Memory, 47
Values, 47

domains, 35–48, 83, 87–100, 117–125
elements, 45

evaluator
individuals, 73
operators, 74

external object, 25–26, 51, 111, 134–
136

external subobject, 112, 136
external subobjects, 26–27, 137

Fib element, 102
Fib multimedia object, 63

correct, 65
fitness

individuals, 73
format

compressed, 80
function, 107–109, 131–133

absolute value, 22
addition, 18
Arc sine, 21
delay, 22
division, 19
exponent, 20
if, 23

logarithm, 21
maximum, 20
minimum, 20
multiplication, 19
round, 22
sine, 21
subtraction, 19
Value, 18
Variable, 18

function element, 17–23, 107–109, 131–
133

Funktion
mod, 20
modulo, 20

genetic algorithm, 71
GPL, 145

if-element, 24, 109–111, 133–134
individual, see cIndividual
input variables, 84, 100, 125

LGPL, 158
list element, 14, 106, 129–130

main-Fib-object, 100, 126
matrix element, 31–33, 113–114, 140–

142
mortality, 74
move points, 58
multimedia information, 83, 85, 116

optional information fields, 82
Optional part, 48
optional part, 85, 101, 117
Order

particular Fib elements, 55
order

Fib elements, 55
move points, 58

part object, 59–63

172

INDEX

coherent, 61
genuine, 59
simple, 61

point element, 6–7, 103–104, 128–129
propertie element, 7–14
property element, 104–106, 129

root-element, 33–53, 81–102, 116–127

Selection, 74
set-element, 30–31, 113, 138–140
sub-root-object, 100, 126
sub-root-objects, 84
subfunction, 107–109, 132–133, see func-

tion element

underfunction, 107–109, 132–133

value domains, 87, 117
Vectors, 102
vectors, 128

XML format, 114
XML header, 115

173

